Suppr超能文献

通过聚谷氨酸结构域修饰的胶原模拟肽增强肽与羟基磷灰石的偶联和植入物骨整合。

Enhancement of peptide coupling to hydroxyapatite and implant osseointegration through collagen mimetic peptide modified with a polyglutamate domain.

机构信息

Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States.

出版信息

Biomaterials. 2010 Dec;31(36):9586-94. doi: 10.1016/j.biomaterials.2010.08.020. Epub 2010 Oct 28.

Abstract

Hydroxyapatite (HA) is a widely-used biomaterial for bone repair due to its high degree of osteoconductivity. However, strategies for improving HA performance by functionalizing surfaces with bioactive factors are limited. In this study, we explored the use of a HA-binding domain (heptaglutamate, "E7") to facilitate coupling of the collagen mimetic peptide, DGEA, to two types of HA-containing materials, solid HA disks and electrospun polycaprolactone matrices incorporating nanoparticulate HA. We found that the E7 domain directed significantly more peptide to the surface of HA and enhanced peptide retention on both materials in vitro. Moreover, E7-modified peptides were retained in vivo for at least two months, highlighting the potential of this mechanism as a sustained delivery system for bioactive peptides. Most importantly, E7-DGEA-coupled HA, as compared with DGEA-HA, enhanced the adhesion and osteoblastic differentiation of mesenchymal stem cells, and also increased new bone formation and direct bone-implant contact on HA disks implanted into rat tibiae. Collectively, these results support the use of E7-DGEA peptides to promote osteogenesis on HA substrates, and further suggest that the E7 domain can serve as a universal tool for anchoring a wide variety of bone regenerative molecules to any type of HA-containing material.

摘要

羟基磷灰石(HA)因其高度的骨传导性而被广泛用于骨修复。然而,通过在表面功能化生物活性因子来提高 HA 性能的策略受到限制。在这项研究中,我们探索了使用 HA 结合域(七肽谷氨酸,“E7”)来促进胶原蛋白模拟肽 DGEA 与两种含 HA 材料的偶联,即固体 HA 盘和含有纳米级 HA 的电纺聚己内酯基质。我们发现 E7 结构域将更多的肽导向 HA 表面,并增强了两种材料的肽保留能力。此外,E7 修饰的肽在体内至少保留两个月,突出了这种机制作为生物活性肽的持续释放系统的潜力。最重要的是,与 DGEA-HA 相比,E7-DGEA 偶联的 HA 增强了间充质干细胞的黏附和成骨分化,并增加了 HA 盘植入大鼠胫骨后新骨形成和直接骨-植入物接触。总的来说,这些结果支持使用 E7-DGEA 肽在 HA 基质上促进成骨,并进一步表明 E7 结构域可用作将各种骨再生分子锚定到任何类型的含 HA 材料的通用工具。

相似文献

2
The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces.
Biomaterials. 2009 Apr;30(10):1898-909. doi: 10.1016/j.biomaterials.2008.12.053. Epub 2009 Jan 20.
3
Tunable delivery of bioactive peptides from hydroxyapatite biomaterials and allograft bone using variable-length polyglutamate domains.
J Biomed Mater Res A. 2014 Apr;102(4):1008-16. doi: 10.1002/jbm.a.34766. Epub 2013 May 30.
6
The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials.
Biomaterials. 2008 Jul;29(21):3075-83. doi: 10.1016/j.biomaterials.2008.04.014. Epub 2008 Apr 25.
10
Polyglutamate directed coupling of bioactive peptides for the delivery of osteoinductive signals on allograft bone.
Biomaterials. 2013 Feb;34(5):1506-13. doi: 10.1016/j.biomaterials.2012.10.046. Epub 2012 Nov 23.

引用本文的文献

1
Advanced therapeutic scaffolds of biomimetic periosteum for functional bone regeneration.
J Nanobiotechnology. 2025 Jul 26;23(1):542. doi: 10.1186/s12951-025-03614-5.
2
Bioinspired synthetic peptide-based biomaterials regenerate bone through biomimicking of extracellular matrix.
J Tissue Eng. 2024 Dec 12;15:20417314241303818. doi: 10.1177/20417314241303818. eCollection 2024 Jan-Dec.
3
Peptide-Based Biomaterials for Bone and Cartilage Regeneration.
Biomedicines. 2024 Jan 29;12(2):313. doi: 10.3390/biomedicines12020313.
7
Decorating 3D Printed Scaffolds with Electrospun Nanofiber Segments for Tissue Engineering.
Adv Biosyst. 2019 Dec;3(12):e1900137. doi: 10.1002/adbi.201900137. Epub 2019 Nov 4.
8
Selection and identification of a novel bone-targeting peptide for biomedical imaging of bone.
Sci Rep. 2020 Jun 29;10(1):10576. doi: 10.1038/s41598-020-67522-4.
9
Mineralization of calcium phosphate controlled by biomimetic self-assembled peptide monolayers via surface electrostatic potentials.
Bioact Mater. 2020 Mar 29;5(2):387-397. doi: 10.1016/j.bioactmat.2020.03.003. eCollection 2020 Jun.

本文引用的文献

1
Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.
Biomaterials. 2010 Mar;31(9):2574-82. doi: 10.1016/j.biomaterials.2009.12.008. Epub 2009 Dec 28.
3
Osteogenic cells on bio-inspired materials for bone tissue engineering.
Physiol Res. 2010;59(3):309-322. doi: 10.33549/physiolres.931776. Epub 2009 Aug 12.
4
Modular peptides promote human mesenchymal stem cell differentiation on biomaterial surfaces.
Acta Biomater. 2010 Jan;6(1):21-8. doi: 10.1016/j.actbio.2009.08.003. Epub 2009 Aug 6.
5
Electrospun materials as potential platforms for bone tissue engineering.
Adv Drug Deliv Rev. 2009 Oct 5;61(12):1065-83. doi: 10.1016/j.addr.2009.07.008. Epub 2009 Jul 29.
6
The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces.
Biomaterials. 2009 Apr;30(10):1898-909. doi: 10.1016/j.biomaterials.2008.12.053. Epub 2009 Jan 20.
7
The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs.
Biomaterials. 2009 Mar;30(7):1428-39. doi: 10.1016/j.biomaterials.2008.10.065. Epub 2008 Dec 9.
8
An electrospun triphasic nanofibrous scaffold for bone tissue engineering.
Biomed Mater. 2007 Jun;2(2):142-50. doi: 10.1088/1748-6041/2/2/013. Epub 2007 May 8.
9
The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials.
Biomaterials. 2008 Jul;29(21):3075-83. doi: 10.1016/j.biomaterials.2008.04.014. Epub 2008 Apr 25.
10
State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
J Tissue Eng Regen Med. 2007 Jul-Aug;1(4):245-60. doi: 10.1002/term.24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验