Suppr超能文献

相关时间至事件数据:对纽约州奶牛重复发生临床乳腺炎数据的建模。

Correlated time to event data: Modeling repeated clinical mastitis data from dairy cattle in New York State.

机构信息

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

出版信息

Prev Vet Med. 2010 Dec 1;97(3-4):150-6. doi: 10.1016/j.prevetmed.2010.09.012. Epub 2010 Oct 28.

Abstract

Mastitis is the most prevalent production disease in dairy herds worldwide and is considered to be the most economically important disease of dairy cattle. Modeling the risk of cows contracting mastitis is therefore of great interest for both targeting prevention programs and evaluating treatment protocols. Clinical mastitis (CM) is a disease of recurrent nature, thus correlation between the subsequent events within one cow may be present. This would violate the assumption behind most statistical time-to-event models. In the case of time to event models, the semi-parametric Cox regression models have become the default tool in modeling the time to an event. Limited methods are currently available to evaluate marginal and random (frailty) effects to account for multiple correlation sources. The objective of this study was to explore the implications of using several Cox or related semi-parametric or parametric models to estimate the hazard for CM in the presence of correlation between events. We evaluated the Andersen-Gill model which uses robust standard errors to account for the correlation, the Conditional Anderson-Gill model that uses stratification to account for event dependence, the Frailty model that introduces a random term to account for unobserved (cow level) heterogeneity, and a related generalized linear mixed model that uses Poisson regression to allow multi-level modeling of time-to-event data. We analyzed data on the occurrence of CM from five dairy farms in New York State. Data were from 8206 cows with 721, 275, 119, and 57 first, second, third, and fourth occurrences of CM, respectively, in the same lactation. The analysis of our sample dataset demonstrated that both cow- and farm-level correlation are present in the case of CM. The Conditional Frailty model was able to model one source of correlation in a random effect and one in a fixed effect. Poisson modeling allowed for simultaneous estimation of within cow correlation and within herd correlation.

摘要

乳腺炎是世界范围内奶牛养殖中最常见的生产疾病,被认为是奶牛最具经济重要性的疾病。因此,对奶牛患乳腺炎的风险进行建模对于针对预防计划和评估治疗方案都具有重要意义。临床乳腺炎(CM)是一种反复发作的疾病,因此同一头奶牛的后续事件之间可能存在相关性。这将违反大多数统计时间到事件模型背后的假设。在时间到事件模型的情况下,半参数 Cox 回归模型已成为建模事件时间的默认工具。目前,可用的方法有限,无法评估边缘和随机(脆弱性)效应,以考虑多个相关源。本研究的目的是探讨在事件之间存在相关性的情况下,使用几种 Cox 或相关半参数或参数模型来估计 CM 风险的影响。我们评估了使用稳健标准误差来解释相关性的 Andersen-Gill 模型、使用分层来解释事件依赖性的条件 Andersen-Gill 模型、引入随机项来解释未观察到的(奶牛水平)异质性的脆弱性模型,以及一种相关的广义线性混合模型,该模型使用泊松回归来允许对时间到事件数据进行多层次建模。我们分析了来自纽约州五个奶牛场的 CM 发生数据。数据来自 8206 头奶牛,同一泌乳期分别有 721、275、119 和 57 头首次、第二次、第三次和第四次 CM 发作。对我们的样本数据集的分析表明,在 CM 的情况下,既有牛级相关性,也有农场级相关性。条件脆弱性模型能够在随机效应中模拟一个相关源,在固定效应中模拟一个相关源。泊松模型允许同时估计奶牛内相关性和牛群内相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验