Suppr超能文献

基于 Pareto 前沿分析的 miRNA 靶标预测评分排序。

Ranking of microRNA target prediction scores by Pareto front analysis.

机构信息

Queen's University Belfast, Centre for Cancer Research and Cell Biology, Belfast BT9 7BL, UK.

出版信息

Comput Biol Chem. 2010 Dec;34(5-6):284-92. doi: 10.1016/j.compbiolchem.2010.09.005. Epub 2010 Oct 8.

Abstract

Over the past ten years, a variety of microRNA target prediction methods has been developed, and many of the methods are constantly improved and adapted to recent insights into miRNA-mRNA interactions. In a typical scenario, different methods return different rankings of putative targets, even if the ranking is reduced to selected mRNAs that are related to a specific disease or cell type. For the experimental validation it is then difficult to decide in which order to process the predicted miRNA-mRNA bindings, since each validation is a laborious task and therefore only a limited number of mRNAs can be analysed. We propose a new ranking scheme that combines ranked predictions from several methods and - unlike standard thresholding methods - utilises the concept of Pareto fronts as defined in multi-objective optimisation. In the present study, we attempt a proof of concept by applying the new ranking scheme to hsa-miR-21, hsa-miR-125b, and hsa-miR-373 and prediction scores supplied by PITA and RNAhybrid. The scores are interpreted as a two-objective optimisation problem, and the elements of the Pareto front are ranked by the STarMir score with a subsequent re-calculation of the Pareto front after removal of the top-ranked mRNA from the basic set of prediction scores. The method is evaluated on validated targets of the three miRNA, and the ranking is compared to scores from DIANA-microT and TargetScan. We observed that the new ranking method performs well and consistent, and the first validated targets are elements of Pareto fronts at a relatively early stage of the recurrent procedure, which encourages further research towards a higher-dimensional analysis of Pareto fronts.

摘要

在过去的十年中,已经开发出了多种 microRNA 靶标预测方法,并且许多方法都在不断改进和适应最近对 miRNA-mRNA 相互作用的见解。在典型情况下,不同的方法会返回不同的假定靶目标的排名,即使排名缩小到与特定疾病或细胞类型相关的选定 mRNAs。对于实验验证,然后很难决定以哪种顺序处理预测的 miRNA-mRNA 结合,因为每个验证都是一项费力的任务,因此只能分析有限数量的 mRNAs。我们提出了一种新的排名方案,该方案结合了几种方法的排名预测,并且与标准阈值方法不同,它利用了多目标优化中定义的 Pareto 前沿的概念。在本研究中,我们尝试通过将新的排名方案应用于 hsa-miR-21、hsa-miR-125b 和 hsa-miR-373 以及由 PITA 和 RNAhybrid 提供的预测分数来证明这一概念。分数被解释为一个双目标优化问题,Pareto 前沿的元素通过 STarMir 分数进行排名,然后在从基本预测分数集中删除排名最高的 mRNAs 后重新计算 Pareto 前沿。该方法在这三个 miRNA 的验证靶标上进行了评估,并将排名与 DIANA-microT 和 TargetScan 的分数进行了比较。我们观察到,新的排名方法表现良好且一致,并且在反复过程的早期阶段,第一批验证的靶标就是 Pareto 前沿的元素,这鼓励对 Pareto 前沿进行更高维的分析进行进一步的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验