Suppr超能文献

噬菌体 T4 重组酶 UvsX 的晶体结构及其与 T4 SF2 解旋酶 UvsW 的功能相互作用。

Crystal structure of the phage T4 recombinase UvsX and its functional interaction with the T4 SF2 helicase UvsW.

机构信息

Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

J Mol Biol. 2011 Jan 7;405(1):65-76. doi: 10.1016/j.jmb.2010.10.004. Epub 2010 Oct 28.

Abstract

Bacteriophage T4 provides an important model system for studying the mechanism of homologous recombination. We have determined the crystal structure of the T4 UvsX recombinase, and the overall architecture and fold closely resemble those of RecA, including a highly conserved ATP binding site. Based on this new structure, we reanalyzed electron microscopy reconstructions of UvsX-DNA filaments and docked the UvsX crystal structure into two different filament forms: a compressed filament generated in the presence of ADP and an elongated filament generated in the presence of ATP and aluminum fluoride. In these reconstructions, the ATP binding site sits at the protomer interface, as in the RecA filament crystal structure. However, the environment of the ATP binding site is altered in the two filament reconstructions, suggesting that nucleotide cannot be as easily accommodated at the protomer interface of the compressed filament. Finally, we show that the phage helicase UvsW completes the UvsX-promoted strand-exchange reaction, allowing the generation of a simple nicked circular product rather than complex networks of partially exchanged substrates.

摘要

噬菌体 T4 为研究同源重组机制提供了一个重要的模型系统。我们已经确定了 T4 UvsX 重组酶的晶体结构,其整体结构和折叠与 RecA 非常相似,包括一个高度保守的 ATP 结合位点。基于这个新结构,我们重新分析了 UvsX-DNA 丝的电子显微镜重构,并将 UvsX 晶体结构对接入两种不同的丝形式:在 ADP 存在下生成的压缩丝和在 ATP 和氟化铝存在下生成的伸长丝。在这些重构中,ATP 结合位点位于单体界面,与 RecA 丝晶体结构相同。然而,在两种丝重构中,ATP 结合位点的环境发生了改变,这表明在压缩丝的单体界面上核苷酸不能轻易容纳。最后,我们表明噬菌体解旋酶 UvsW 完成了 UvsX 促进的链交换反应,生成了简单的缺口环状产物,而不是部分交换底物的复杂网络。

相似文献

1
Crystal structure of the phage T4 recombinase UvsX and its functional interaction with the T4 SF2 helicase UvsW.
J Mol Biol. 2011 Jan 7;405(1):65-76. doi: 10.1016/j.jmb.2010.10.004. Epub 2010 Oct 28.
3
The crystal structure of the UvsW helicase from bacteriophage T4.
Structure. 2004 Apr;12(4):583-92. doi: 10.1016/j.str.2004.02.016.
6
Crystallographic and NMR analyses of UvsW and UvsW.1 from bacteriophage T4.
J Biol Chem. 2007 Nov 23;282(47):34392-400. doi: 10.1074/jbc.M705900200. Epub 2007 Sep 17.
10
Interaction of T4 UvsW helicase and single-stranded DNA binding protein gp32 through its carboxy-terminal acidic tail.
J Mol Biol. 2013 Aug 23;425(16):2823-39. doi: 10.1016/j.jmb.2013.05.012. Epub 2013 Jun 1.

引用本文的文献

1
Recombinase-Controlled Multiphase Condensates Accelerate Nucleic Acid Amplification and CRISPR-Based Diagnostics.
J Am Chem Soc. 2025 Mar 26;147(12):10088-10103. doi: 10.1021/jacs.4c11893. Epub 2025 Feb 13.
3
A real-time fluorescent gp32 probe-based assay for monitoring single-stranded DNA-dependent DNA processing enzymes.
Biochem Biophys Rep. 2023 Jul 22;35:101518. doi: 10.1016/j.bbrep.2023.101518. eCollection 2023 Sep.
5
Bacteriophage T4 Escapes CRISPR Attack by Minihomology Recombination and Repair.
mBio. 2021 Jun 29;12(3):e0136121. doi: 10.1128/mBio.01361-21. Epub 2021 Jun 22.
6
A Novel, Highly Related Jumbo Family of Bacteriophages That Were Isolated Against .
Front Microbiol. 2019 Jul 23;10:1533. doi: 10.3389/fmicb.2019.01533. eCollection 2019.
9
Structure and mechanism of the phage T4 recombination mediator protein UvsY.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3275-80. doi: 10.1073/pnas.1519154113. Epub 2016 Mar 7.
10
DNA-pairing and annealing processes in homologous recombination and homology-directed repair.
Cold Spring Harb Perspect Biol. 2015 Feb 2;7(2):a016444. doi: 10.1101/cshperspect.a016444.

本文引用的文献

1
Structural transitions within human Rad51 nucleoprotein filaments.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12688-93. doi: 10.1073/pnas.0811465106. Epub 2009 Jul 21.
2
Processive and unidirectional translocation of monomeric UvsW helicase on single-stranded DNA.
Biochemistry. 2009 Feb 10;48(5):1036-46. doi: 10.1021/bi801792q.
3
Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):361-8. doi: 10.1073/pnas.0811965106. Epub 2009 Jan 2.
4
Counting RAD51 proteins disassembling from nucleoprotein filaments under tension.
Nature. 2009 Feb 5;457(7230):745-8. doi: 10.1038/nature07581. Epub 2008 Dec 7.
5
Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures.
Nature. 2008 May 22;453(7194):489-4. doi: 10.1038/nature06971.
6
Mechanism of eukaryotic homologous recombination.
Annu Rev Biochem. 2008;77:229-57. doi: 10.1146/annurev.biochem.77.061306.125255.
7
Homologous recombination in DNA repair and DNA damage tolerance.
Cell Res. 2008 Jan;18(1):99-113. doi: 10.1038/cr.2008.1.
8
Crystallographic and NMR analyses of UvsW and UvsW.1 from bacteriophage T4.
J Biol Chem. 2007 Nov 23;282(47):34392-400. doi: 10.1074/jbc.M705900200. Epub 2007 Sep 17.
9
The phage T4 protein UvsW drives Holliday junction branch migration.
J Biol Chem. 2007 Nov 23;282(47):34401-11. doi: 10.1074/jbc.M705913200. Epub 2007 Sep 5.
10
Visualization of RecA filaments and DNA by fluorescence microscopy.
J Biochem. 2007 Feb;141(2):147-56. doi: 10.1093/jb/mvm033. Epub 2007 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验