Suppr超能文献

神经异质性影响感觉外围的包络和时间编码。

Neural heterogeneities influence envelope and temporal coding at the sensory periphery.

机构信息

Department of Physiology, McGill University, Montreal, QC, Canada.

出版信息

Neuroscience. 2011 Jan 13;172:270-84. doi: 10.1016/j.neuroscience.2010.10.061. Epub 2010 Oct 28.

Abstract

Peripheral sensory neurons respond to stimuli containing a wide range of spatio-temporal frequencies. We investigated electroreceptor neuron coding in the gymnotiform wave-type weakly electric fish Apteronotus leptorhynchus. Previous studies used low to mid temporal frequencies (<256 Hz) and showed that electroreceptor neuron responses to sensory stimuli could be almost exclusively accounted for by linear models, thereby implying a rate code. We instead used temporal frequencies up to 425 Hz, which is in the upper behaviorally relevant range for this species. We show that electroreceptors can: (A) respond up to the highest frequencies tested and (B) display strong nonlinearities in their responses to such stimuli. These nonlinearities were manifested by the fact that the responses to repeated presentations of the same stimulus were coherent at temporal frequencies outside of those contained in the stimulus waveform. Specifically, these consisted of low frequencies corresponding to the time varying contrast or envelope of the stimulus as well as higher harmonics of the frequencies contained in the stimulus. Heterogeneities in the afferent population influenced nonlinear coding as afferents with the lowest baseline firing rates tended to display the strongest nonlinear responses. To understand the link between afferent heterogeneity and nonlinear responsiveness, we used a phenomenological mathematical model of electrosensory afferents. Varying a single parameter in the model was sufficient to account for the variability seen in our experimental data and yielded a prediction: nonlinear responses to the envelope and at higher harmonics are both due to afferents with lower baseline firing rates displaying greater degrees of rectification in their responses. This prediction was verified experimentally as we found that the coherence between the half-wave rectified stimulus and the response resembled the coherence between the responses to repeated presentations of the stimulus in our dataset. This result shows that rectification cannot only give rise to responses to low frequency envelopes but also at frequencies that are higher than those contained in the stimulus. The latter result implies that information is contained in the fine temporal structure of electroreceptor afferent spike trains. Our results show that heterogeneities in peripheral neuronal populations can have dramatic consequences on the nature of the neural code.

摘要

周围感觉神经元对包含广泛时空频率的刺激做出反应。我们研究了电感受神经元在电鳗型弱电鱼 Apteronotus leptorhynchus 中的编码。以前的研究使用的是中低时间频率(<256 Hz),并表明电感受神经元对感觉刺激的反应几乎可以完全用线性模型来解释,从而暗示了一种率码。我们使用的时间频率高达 425 Hz,这在该物种的行为相关范围内处于较高水平。我们表明,电感受器可以:(A)对测试的最高频率做出反应;(B)对这些刺激的反应表现出强烈的非线性。这些非线性表现为,对相同刺激的重复呈现的反应在包含在刺激波形之外的时间频率上是相干的。具体来说,这些反应包括与刺激的时变对比度或包络相对应的低频,以及刺激中包含的频率的更高谐波。传入群体的异质性影响非线性编码,因为基线发射率最低的传入神经往往表现出最强的非线性反应。为了理解传入神经异质性和非线性反应能力之间的联系,我们使用了一种电感受传入神经的现象学数学模型。在模型中改变单个参数足以解释我们实验数据中的可变性,并产生了一个预测:对包络和更高谐波的非线性反应都是由于基线发射率较低的传入神经在其反应中表现出更大程度的整流。该预测在实验中得到了验证,因为我们发现半波整流刺激和反应之间的相干性类似于我们数据集中介于刺激重复呈现之间的反应的相干性。这一结果表明,整流不仅可以产生对低频包络的反应,还可以产生高于刺激中包含的频率的反应。后一结果意味着信息包含在电感受传入神经冲动序列的精细时间结构中。我们的结果表明,周围神经元群体的异质性会对神经编码的性质产生巨大影响。

相似文献

1
Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
Neuroscience. 2011 Jan 13;172:270-84. doi: 10.1016/j.neuroscience.2010.10.061. Epub 2010 Oct 28.
3
Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations.
J Neurosci. 2016 Sep 21;36(38):9859-72. doi: 10.1523/JNEUROSCI.1433-16.2016.
4
Electroreceptor neuron dynamics shape information transmission.
Nat Neurosci. 2005 May;8(5):673-8. doi: 10.1038/nn1433. Epub 2005 Apr 3.
5
Simultaneous spike-time locking to multiple frequencies.
J Neurophysiol. 2020 Jun 1;123(6):2355-2372. doi: 10.1152/jn.00615.2019. Epub 2020 May 6.
7
Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
J Neurophysiol. 1996 Jun;75(6):2280-93. doi: 10.1152/jn.1996.75.6.2280.
8
Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features.
J Neurosci. 2015 Feb 18;35(7):3124-38. doi: 10.1523/JNEUROSCI.3946-14.2015.
10
Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents.
J Neurophysiol. 2007 Nov;98(5):2795-806. doi: 10.1152/jn.01289.2006. Epub 2007 Sep 12.

引用本文的文献

1
Receptive field sizes and neuronal encoding bandwidth are constrained by axonal conduction delays.
PLoS Comput Biol. 2023 Aug 11;19(8):e1010871. doi: 10.1371/journal.pcbi.1010871. eCollection 2023 Aug.
2
Beat encoding at mistuned octaves within single electrosensory neurons.
iScience. 2023 May 13;26(7):106840. doi: 10.1016/j.isci.2023.106840. eCollection 2023 Jul 21.
4
Neural Processing of Communication Signals: The Extent of Sender-Receiver Matching Varies across Species of .
eNeuro. 2019 Mar 19;6(2). doi: 10.1523/ENEURO.0392-18.2019. eCollection 2019 Mar-Apr.
5
Feedback optimizes neural coding and perception of natural stimuli.
Elife. 2018 Oct 5;7:e38935. doi: 10.7554/eLife.38935.
6
Descending pathways generate perception of and neural responses to weak sensory input.
PLoS Biol. 2018 Jun 25;16(6):e2005239. doi: 10.1371/journal.pbio.2005239. eCollection 2018 Jun.
7
Statistics of Natural Communication Signals Observed in the Wild Identify Important Yet Neglected Stimulus Regimes in Weakly Electric Fish.
J Neurosci. 2018 Jun 13;38(24):5456-5465. doi: 10.1523/JNEUROSCI.0350-18.2018. Epub 2018 May 7.
8
10
Electrosensory neural responses to natural electro-communication stimuli are distributed along a continuum.
PLoS One. 2017 Apr 6;12(4):e0175322. doi: 10.1371/journal.pone.0175322. eCollection 2017.

本文引用的文献

1
Neural heterogeneities and stimulus properties affect burst coding in vivo.
Neuroscience. 2010 Jun 16;168(1):300-13. doi: 10.1016/j.neuroscience.2010.03.012. Epub 2010 Mar 15.
3
Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
Behav Brain Res. 2010 Mar 5;207(2):368-76. doi: 10.1016/j.bbr.2009.10.023. Epub 2009 Oct 27.
4
Walking in Fourier's space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Oct;195(10):971-87. doi: 10.1007/s00359-009-0473-0.
5
SK channels gate information processing in vivo by regulating an intrinsic bursting mechanism seen in vitro.
J Neurophysiol. 2009 Oct;102(4):2273-87. doi: 10.1152/jn.00282.2009. Epub 2009 Aug 12.
6
An improved method for the estimation of firing rate dynamics using an optimal digital filter.
J Neurosci Methods. 2008 Aug 15;173(1):165-81. doi: 10.1016/j.jneumeth.2008.05.021. Epub 2008 Jun 3.
7
Flies see second-order motion.
Curr Biol. 2008 Jun 3;18(11):R464-5. doi: 10.1016/j.cub.2008.03.050.
8
Neural dynamics of envelope coding.
Math Biosci. 2008 Jul-Aug;214(1-2):87-99. doi: 10.1016/j.mbs.2008.01.008. Epub 2008 Feb 14.
9
Temporal processing across multiple topographic maps in the electrosensory system.
J Neurophysiol. 2008 Aug;100(2):852-67. doi: 10.1152/jn.90300.2008. Epub 2008 May 28.
10
Electric field interactions in pairs of electric fish: modeling and mimicking naturalistic inputs.
Biol Cybern. 2008 Jun;98(6):479-90. doi: 10.1007/s00422-008-0218-0. Epub 2008 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验