Suppr超能文献

弱电鱼对运动过程中自然产生的包络显示出行为反应:对神经处理的启示。

Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.

作者信息

Metzen Michael G, Chacron Maurice J

机构信息

Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.

出版信息

J Exp Biol. 2014 Apr 15;217(Pt 8):1381-91. doi: 10.1242/jeb.098574. Epub 2013 Dec 20.

Abstract

How the brain processes natural sensory input remains an important and poorly understood problem in neuroscience. The efficient coding hypothesis asserts that the brain's coding strategies are adapted to the statistics of natural stimuli in order to efficiently process them, thereby optimizing their perception by the organism. Here we examined whether gymnotiform weakly electric fish displayed behavioral responses that are adapted to the statistics of the natural electrosensory envelopes. Previous studies have shown that the envelopes resulting from movement tend to consist of low (<1 Hz) temporal frequencies and are behaviorally relevant whereas those resulting from social interactions consist of higher (>1 Hz) temporal frequencies that can thus mask more behaviorally relevant signals. We found that the self-generated electric organ discharge frequency follows the detailed time course of the envelope around a mean value that is positively offset with respect to its baseline value for temporal frequencies between 0.001 Hz and 1 Hz. The frequency-following component of this behavioral response decreased in magnitude as a power law as a function of the envelope frequency and was negligible for envelope frequencies above 1 Hz. In contrast, the offset component was relatively constant and somewhat increased for envelope frequencies above 1 Hz. Thus, our results show that weakly electric fish display behavioral responses that track the detailed time course of low but not high frequency envelope stimuli. Furthermore, we found that the magnitude of the frequency-following behavioral response matches, in a one-to-one fashion, the spectral power of natural second-order stimulus attributes observed during movement. Indeed, both decayed as a power law with the same exponent for temporal frequencies spanning three orders of magnitude. Thus, our findings suggest that the neural coding strategies used by weakly electric fish perceive the detailed time course of movement envelopes and are adapted to their statistics as found in the natural environment. They also suggest that weakly electric fish might take advantage of the differential frequency content of movement and social envelopes in order to give appropriate behavioral responses during encounters between two or more conspecifics.

摘要

大脑如何处理自然感官输入在神经科学领域仍然是一个重要且尚未得到充分理解的问题。高效编码假说认为,大脑的编码策略是为了有效处理自然刺激的统计特征而进行调整的,从而优化生物体对它们的感知。在这里,我们研究了裸背电鳗目弱电鱼是否表现出适应自然电感觉包络统计特征的行为反应。先前的研究表明,由运动产生的包络往往由低(<1 Hz)时间频率组成,并且在行为上具有相关性,而由社交互动产生的包络则由较高(>1 Hz)时间频率组成,因此可能会掩盖更多行为相关信号。我们发现,自发电鱼电器官放电频率遵循包络的详细时间进程,其平均值相对于0.001 Hz至1 Hz时间频率的基线值有正向偏移。这种行为反应的频率跟随成分随着包络频率以幂律形式减小,并且对于高于1 Hz的包络频率可以忽略不计。相比之下,偏移成分相对恒定,并且对于高于1 Hz的包络频率略有增加。因此,我们的结果表明,弱电鱼表现出跟踪低频而非高频包络刺激详细时间进程的行为反应。此外,我们发现频率跟随行为反应的幅度与运动过程中观察到的自然二阶刺激属性的频谱功率一一匹配。实际上,对于跨越三个数量级的时间频率,两者均以相同指数的幂律衰减。因此,我们的研究结果表明,弱电鱼使用的神经编码策略能够感知运动包络的详细时间进程,并适应自然环境中发现的统计特征。它们还表明,弱电鱼可能利用运动和社交包络的频率差异内容,以便在两个或更多同种个体相遇时做出适当的行为反应。

相似文献

2
Perception and coding of envelopes in weakly electric fishes.
J Exp Biol. 2013 Jul 1;216(Pt 13):2393-402. doi: 10.1242/jeb.082321.
3
Weakly electric fish distinguish between envelope stimuli arising from different behavioral contexts.
J Exp Biol. 2018 Aug 13;221(Pt 15):jeb178244. doi: 10.1242/jeb.178244.
5
Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
Neuroscience. 2011 Jan 13;172:270-84. doi: 10.1016/j.neuroscience.2010.10.061. Epub 2010 Oct 28.
6
Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
J Neurosci. 2013 Aug 21;33(34):13758-72. doi: 10.1523/JNEUROSCI.0998-13.2013.

引用本文的文献

1
Fractional order memcapacitive neuromorphic elements reproduce and predict neuronal function.
Sci Rep. 2024 Mar 9;14(1):5817. doi: 10.1038/s41598-024-55784-1.
2
Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons.
Heliyon. 2023 Jul 14;9(7):e18315. doi: 10.1016/j.heliyon.2023.e18315. eCollection 2023 Jul.
3
Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior.
iScience. 2023 Jun 15;26(7):107139. doi: 10.1016/j.isci.2023.107139. eCollection 2023 Jul 21.
4
Spooky Interaction at a Distance in Cave and Surface Dwelling Electric Fishes.
Front Integr Neurosci. 2020 Oct 22;14:561524. doi: 10.3389/fnint.2020.561524. eCollection 2020.
5
Serotonergic Modulation of Sensory Neuron Activity and Behavior in .
Front Integr Neurosci. 2020 Jul 7;14:38. doi: 10.3389/fnint.2020.00038. eCollection 2020.
8
Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish.
Sci Adv. 2019 Oct 30;5(10):eaax2211. doi: 10.1126/sciadv.aax2211. eCollection 2019 Oct.
9
Electrosensory Contrast Signals for Interacting Weakly Electric Fish.
Front Integr Neurosci. 2019 Jul 31;13:36. doi: 10.3389/fnint.2019.00036. eCollection 2019.
10
Population Coding and Correlated Variability in Electrosensory Pathways.
Front Integr Neurosci. 2018 Nov 27;12:56. doi: 10.3389/fnint.2018.00056. eCollection 2018.

本文引用的文献

1
Neural maps in the electrosensory system of weakly electric fish.
Curr Opin Neurobiol. 2014 Feb;24(1):13-21. doi: 10.1016/j.conb.2013.08.013. Epub 2013 Sep 4.
2
Serotonin selectively enhances perception and sensory neural responses to stimuli generated by same-sex conspecifics.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19609-14. doi: 10.1073/pnas.1314008110. Epub 2013 Nov 11.
3
Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
J Neurosci. 2013 Aug 21;33(34):13758-72. doi: 10.1523/JNEUROSCI.0998-13.2013.
4
Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish.
J Exp Biol. 2013 Jul 1;216(Pt 13):2442-50. doi: 10.1242/jeb.082370.
5
Perception and coding of envelopes in weakly electric fishes.
J Exp Biol. 2013 Jul 1;216(Pt 13):2393-402. doi: 10.1242/jeb.082321.
7
Coding conspecific identity and motion in the electric sense.
PLoS Comput Biol. 2012;8(7):e1002564. doi: 10.1371/journal.pcbi.1002564. Epub 2012 Jul 12.
8
Parallel coding of first- and second-order stimulus attributes by midbrain electrosensory neurons.
J Neurosci. 2012 Apr 18;32(16):5510-24. doi: 10.1523/JNEUROSCI.0478-12.2012.
9
Cellular and circuit properties supporting different sensory coding strategies in electric fish and other systems.
Curr Opin Neurobiol. 2012 Aug;22(4):686-92. doi: 10.1016/j.conb.2012.01.009. Epub 2012 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验