Cardiovascular Research Laboratory, Department of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, USA.
Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H271-8. doi: 10.1152/ajpheart.00758.2009. Epub 2010 Oct 29.
Anisotropy can lead to unidirectional conduction block that initiates reentry. We analyzed the mechanisms in patterned anisotropic neonatal rat ventricular myocyte monolayers. Voltage and intracellular Ca (Ca(i)) were optically mapped under the following conditions: extrastimulus (S1S2) testing and/or tetrodotoxin (TTX) to suppress Na current availability; heptanol to reduce gap junction conductance; and incremental rapid pacing. In anisotropic monolayers paced at 2 Hz, conduction velocity (CV) was faster longitudinally than transversely, with an anisotropy ratio [AR = CV(L)/CV(T), where CV(L) and CV(T) are CV in the longitudinal and transverse directions, respectively], averaging 2.1 ± 0.8. Interventions decreasing Na current availability, such as S1S2 pacing and TTX, slowed CV(L) and CV(T) proportionately, without changing the AR. Conduction block preferentially occurred longitudinal to fiber direction, commonly initiating reentry. Interventions that decreased gap junction conductance, such as heptanol, decreased CV(T) more than CV(L), increasing the AR and causing preferential transverse conduction block and reentry. Rapid pacing resembled the latter, increasing the AR and promoting transverse conduction block and reentry, which was prevented by the Ca(i) chelator 1,2-bis oaminophenoxy ethane-N,N,N',N'-tetraacetic acid (BAPTA). In contrast to isotropic and uniformly anisotropic monolayers, in which reentrant rotors drifted and self-terminated, bidirectional anisotropy (i.e., an abrupt change in fiber direction exceeding 45°) caused reentry to anchor near the zone of fiber direction change in 77% of monolayers. In anisotropic monolayers, unidirectional conduction block initiating reentry can occur longitudinal or transverse to fiber direction, depending on whether the experimental intervention reduces Na current availability or decreases gap junction conductance, agreeing with theoretical predictions.
各向异性可导致单向传导阻滞,从而引发折返。我们分析了模式化各向异性新生大鼠心室肌细胞单层中的机制。在以下条件下通过光学映射进行电压和细胞内 Ca(Ca(i))分析:刺激(S1S2)测试和/或河豚毒素(TTX)以抑制钠电流可用性;庚醇以降低间隙连接电导;以及递增快速起搏。在以 2 Hz 起搏的各向异性单层中,与横向相比,纵向的传导速度(CV)更快,各向异性比 [AR=CV(L)/CV(T),其中 CV(L)和 CV(T)分别是纵向和横向的 CV],平均为 2.1±0.8。降低钠电流可用性的干预措施,如 S1S2 起搏和 TTX,会使 CV(L)和 CV(T)成比例地减慢,而不改变 AR。传导阻滞优先发生在纤维方向的纵向,通常引发折返。降低间隙连接电导的干预措施,如庚醇,使 CV(T)降低的程度大于 CV(L),增加 AR 并导致优先的横向传导阻滞和折返。快速起搏类似于后者,增加 AR 并促进横向传导阻滞和折返,而 Ca(i)螯合剂 1,2-双(邻氨基苯氧基)乙烷-N,N,N',N'-四乙酸(BAPTA)可预防这种情况。与各向同性和均匀各向异性单层不同,在各向异性单层中,折返的转子漂移并自行终止,双向各向异性(即纤维方向的突然变化超过 45°)导致 77%的单层中折返锚定在纤维方向变化区域附近。在各向异性单层中,单向传导阻滞引发折返可以在纤维方向的纵向或横向发生,这取决于实验干预是降低钠电流可用性还是降低间隙连接电导,这与理论预测一致。