Suppr超能文献

Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney.

作者信息

Baylis C, Harton P, Engels K

机构信息

Department of Physiology, West Virginia University, Morgantown 26505.

出版信息

J Am Soc Nephrol. 1990 Dec;1(6):875-81. doi: 10.1681/ASN.V16875.

Abstract

These studies were conducted in the conscious, chronically catheterized rat to determine whether the endothelial derived relaxing factor (EDRF) controls renal function in the normal state. Administration of the EDRF synthesis inhibitors N-monomethyl-L-arginine (NMA; 100 mg/kg body weight) or N-nitro-L-arginine methylester (NAME; 10 mg/kg body wt) led to a large, sustained rise in blood pressure, a large rise in renal vascular resistance, a fall in renal plasma flow, a relatively slight reduction in glomerular filtration rate, and a consequent rise in filtration fraction. In addition, a marked natriuresis occurred because of a reduction in the fractional reabsorption of sodium. In separate studies, a continuous infusion of excess L-arginine (300 mg/kg body wt bolus followed by 50 mg/kg body wt per min) attenuated the NMA- or NAME-induced rise in blood pressure and reversed the renal hemodynamic effects such that a significant rise in renal plasma flow was seen. L-Arginine alone produced a selective renal vasodilation and large increases in sodium excretion. These observations support earlier suggestions that tonic release of EDRF controls the basal blood pressure and also show that renal function in the normal unstressed rat is markedly influenced by EDRF. These studies suggest that, in addition to controlling renal plasma flow, EDRF may have other, complex actions at the glomerulus. The natriuresis seen after acute inhibition of EDRF with NMA or NAME was probably the result of a pressure natriuretic response to the abrupt rise in blood pressure and also, perhaps, reflects removal of an EDRF influence to directly enhance sodium reabsorption somewhere in the nephron.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验