Tanaka Masafumi, Dhanasekaran Padmaja, Nguyen David, Nickel Margaret, Takechi Yuki, Lund-Katz Sissel, Phillips Michael C, Saito Hiroyuki
Department of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
Biochim Biophys Acta. 2011 Jan;1811(1):25-30. doi: 10.1016/j.bbalip.2010.10.003. Epub 2010 Oct 30.
As the principal component of high-density lipoprotein (HDL), apolipoprotein (apo) A-I plays essential roles in lipid transport and metabolism. Because of its intrinsic conformational plasticity and flexibility, the molecular details of the tertiary structure of lipid-free apoA-I have not been fully elucidated. Previously, we demonstrated that the stability of the N-terminal helix bundle structure is modulated by proline substitution at the most hydrophobic region (residues around Y18) in the N-terminal domain. Here we examine the effect of proline substitution at S55 located in another relatively hydrophobic region compared to most of the helix bundle domain to elucidate the influences on the helix bundle structure and lipid interaction. Fluorescence measurements revealed that the S55P mutation had a modest effect on the stability of the bundle structure, indicating that residues around S55 are not pivotally involved in the helix bundle formation, in contrast to the insertion of proline at position 18. Although truncation of the C-terminal domain (Δ190-243) diminishes the lipid binding of apoA-I molecule, the mutation S55P in addition to the C-terminal truncation (S55P/Δ190-243) restored the lipid binding, suggesting that the S55P mutation causes a partial unfolding of the helix bundle to facilitate lipid binding. Furthermore, additional proline substitution at Y18 (Y18P/S55P/Δ190-243), which leads to a drastic unfolding of the helix bundle structure, yielded a greater lipid binding ability. Thus, proline substitutions in the N-terminal domain of apoA-I that destabilized the helix bundle promoted lipid solubilization. These results suggest that not only the hydrophobic C-terminal helical domain but also the stability of the N-terminal helix bundle in apoA-I are important modulators of the spontaneous solubilization of membrane lipids by apoA-I, a process that leads to the generation of nascent HDL particles.
作为高密度脂蛋白(HDL)的主要成分,载脂蛋白(apo)A-I在脂质运输和代谢中发挥着重要作用。由于其固有的构象可塑性和灵活性,无脂质apoA-I三级结构的分子细节尚未完全阐明。此前,我们证明了N端螺旋束结构的稳定性受N端结构域中最疏水区域(Y18周围的残基)脯氨酸取代的调节。在此,我们研究位于与大多数螺旋束结构域相比另一个相对疏水区域的S55处脯氨酸取代的影响,以阐明对螺旋束结构和脂质相互作用的影响。荧光测量表明,S55P突变对束结构的稳定性有适度影响,这表明与18位脯氨酸插入相比,S55周围的残基并非螺旋束形成的关键因素。尽管C端结构域的截短(Δ190 - 243)会降低apoA-I分子的脂质结合能力,但除了C端截短外的S55P突变(S55P/Δ190 - 243)恢复了脂质结合,这表明S55P突变导致螺旋束部分展开以促进脂质结合。此外,Y18处额外的脯氨酸取代(Y18P/S55P/Δ190 - 243)导致螺旋束结构急剧展开,产生了更强的脂质结合能力。因此,apoA-I N端结构域中使螺旋束不稳定的脯氨酸取代促进了脂质溶解。这些结果表明,不仅疏水的C端螺旋结构域,而且apoA-I中N端螺旋束的稳定性都是apoA-I自发溶解膜脂质过程的重要调节因子,这一过程导致新生HDL颗粒的产生。