Suppr超能文献

采用多频 DBIM 方法的密度成像。

Density imaging using a multiple-frequency DBIM approach.

机构信息

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2471-9. doi: 10.1109/TUFFC.2010.1713.

Abstract

Current inverse scattering methods for quantitative density imaging have limitations that keep them from practical experimental implementations. In this work, an improved approach, termed the multiple-frequency distorted Born iterative method (MF-DBIM) algorithm, was developed for imaging density variations. The MF-DBIM approach consists of inverting the wave equation by solving for a single function that depends on both sound speed and density variations at multiple frequencies. Density information was isolated by using a linear combination of the reconstructed single-frequency profiles. Reconstructions of targets using MF-DBIM from simulated data were compared with reconstructions using methods currently available in the literature, i.e., the dual-frequency DBIM (DF-DBIM) and T-matrix approaches. Useful density reconstructions, i.e., root mean square errors (RMSEs) less than 30%, were obtained with MF-DBIM even with 2% Gaussian noise in the simulated data and using frequency ranges spanning less than an order of magnitude. Therefore, the MFDBIM approach outperformed both the DF-DBIM method (which has problems converging with noise even an order of magnitude smaller) and the T-matrix method (which requires a ka factor close to unity to achieve convergence). However, the convergence of all the density imaging algorithms was compromised when imaging targets with object functions exhibiting high spatial frequency content.

摘要

目前用于定量密度成像的逆散射方法存在局限性,使其无法实际应用于实验。在这项工作中,开发了一种改进的方法,称为多频失真 Born 迭代法 (MF-DBIM) 算法,用于成像密度变化。MF-DBIM 方法通过求解单个函数来反演波动方程,该函数取决于多个频率下的声速和密度变化。通过对重建的单频轮廓进行线性组合来分离密度信息。使用 MF-DBIM 从模拟数据进行的目标重建与使用文献中当前可用的方法(即双频 DBIM (DF-DBIM) 和 T 矩阵方法)进行的重建进行了比较。即使在模拟数据中存在 2%的高斯噪声,并且使用跨越不到一个数量级的频率范围,MF-DBIM 也可以获得有用的密度重建,即均方根误差 (RMSE) 小于 30%。因此,MF-DBIM 方法优于 DF-DBIM 方法(即使噪声小一个数量级,DF-DBIM 方法也存在收敛问题)和 T 矩阵方法(需要 ka 因子接近 1 才能实现收敛)。然而,当对具有高空间频率内容的目标函数进行成像时,所有密度成像算法的收敛性都受到了影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验