Suppr超能文献

使用改进的DF-DBIM方法的断层密度成像。

Tomographic density imaging using modified DF-DBIM approach.

作者信息

Huy Tran Quang, Cuc Nguyen Thi, Nguyen Van Dung, Long Ton That, Tan Tran Duc

机构信息

1Faculty of Physics, Hanoi Pedagogical University 2, Nguyen Van Linh Street, Xuan Hoa Ward, Phuc Yen Town, Vinh Phuc Province Vietnam.

2Hanoi Medical University, 1 Ton That Tung, Dong Da, Hanoi, Vietnam.

出版信息

Biomed Eng Lett. 2019 Aug 20;9(4):449-465. doi: 10.1007/s13534-019-00129-5. eCollection 2019 Nov.

Abstract

Ultrasonic computed tomography based on back scattering theory is the most powerful and accurate tool in ultrasound based imaging approaches because it is capable of providing quantitative information about the imaged target and detects very small targets. The duple-frequency distorted Born iterative method (DF-DBIM), which uses density information along with sound contrast for imaging, is a promising approach for imaging targets at the level of biological tissues. With two frequencies f (low) and f (high) through and iterations respectively, this method is used to estimate target density along with sound contrast. The implications of duple-frequency fusion for the image reconstruction quality of density information along with sound contrast based ultrasound tomography have been analyzed in this paper. In this paper, we concentrate on the selection of parameters that is supposed to be the best to improve the reconstruction quality of ultrasound tomography. When there are restraints imposed on simulated scenarios to have control of the computational cost, the iteration number is determined resulting in giving the best performance. The DF-DBIM is only effective if there are a moderate number of iterations, transmitters and receivers. In case that the number of transducers is either too large or too small, a result of reconstruction which is better than that of the single frequency approach is not produced by the implementation of DF-DBIM. A fixed sum of and was given, the investigation of simulation results shows that the best value of is . The error, when applying this way of choosing the parameters, will be normalized with the reduction of 56.11%, compared to use single frequency as used in the conventional DBIM method. The target density along with sound contrast is used to image targets in this paper. It is a fact that low-frequency offers fine convergence, and high-frequency offers fine spatial resolution. Wherefore, this technique can effectively expand DBIM's applicability to the problem of biological tissue reconstruction. Thanks to the usage of empirical data, this work will be further developed prior to its application in reality.

摘要

基于背散射理论的超声计算机断层扫描是基于超声的成像方法中最强大、最准确的工具,因为它能够提供有关成像目标的定量信息并检测非常小的目标。双频扭曲玻恩迭代法(DF-DBIM)利用密度信息和声对比度进行成像,是一种用于生物组织水平目标成像的有前途的方法。通过分别使用两个频率f(低)和f(高)进行 和 次迭代,该方法用于估计目标密度和声对比度。本文分析了双频融合对基于密度信息和声对比度的超声断层扫描图像重建质量的影响。在本文中,我们专注于选择被认为是提高超声断层扫描重建质量的最佳参数。当对模拟场景施加限制以控制计算成本时,确定迭代次数 会产生最佳性能。DF-DBIM只有在迭代次数、发射器和接收器数量适中时才有效。如果换能器数量过大或过小,实施DF-DBIM不会产生比单频方法更好的重建结果。给定 和 的固定总和 ,模拟结果研究表明 的最佳值为 。与传统DBIM方法中使用单频相比,应用这种选择参数的方法时,误差将被归一化,降低56.11%。本文使用目标密度和声对比度对目标进行成像。事实上,低频提供良好的收敛性,高频提供良好的空间分辨率。因此,该技术可以有效地扩展DBIM在生物组织重建问题上的适用性。由于使用了经验数据,这项工作在实际应用之前将得到进一步发展。

相似文献

1
Tomographic density imaging using modified DF-DBIM approach.使用改进的DF-DBIM方法的断层密度成像。
Biomed Eng Lett. 2019 Aug 20;9(4):449-465. doi: 10.1007/s13534-019-00129-5. eCollection 2019 Nov.
2
Density imaging using a multiple-frequency DBIM approach.采用多频 DBIM 方法的密度成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2471-9. doi: 10.1109/TUFFC.2010.1713.
7
Density imaging using inverse scattering.基于逆散射的密度成像。
J Acoust Soc Am. 2009 Feb;125(2):793-802. doi: 10.1121/1.3050249.

本文引用的文献

1
Density imaging using a multiple-frequency DBIM approach.采用多频 DBIM 方法的密度成像。
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Nov;57(11):2471-9. doi: 10.1109/TUFFC.2010.1713.
4
Density imaging using inverse scattering.基于逆散射的密度成像。
J Acoust Soc Am. 2009 Feb;125(2):793-802. doi: 10.1121/1.3050249.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验