Department of Cardiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey.
J Endocrinol Invest. 2011 Sep;34(8):580-6. doi: 10.3275/7323. Epub 2010 Oct 27.
An algorithm for predicting Type 2 diabetes (DM) risk in a population with prevalent metabolic syndrome (MetS) is needed since ethnicity influences the pathogenesis of DM.
The 8- yr risk of DM was estimated in 2261 middle-aged Turkish adults free of DM at baseline who were followed for over 7.6 yr. DM newly developed in 212 subjects. Cox proportional hazard regression and 15 variables were used to predict DM. Discrimination was assessed with area under receiver operating characteristics curve (AROC).
In multivariable analysis, height, family income brackets, systolic blood pressure, smoking status, alcohol usage, and HDL-cholesterol levels were not predictive in either sex. In addition to sex, family history of DM, fasting glucose, and waist circumference were predictors, in men, age and non-HDL-cholesterol, while in women physical inactivity and serum C-reactive protein were so. AROC of the final model was 0.783 in men, 0.772 in women (p<0.001 each). An algorithm using the stated 7 variables was developed separately for each sex. Men and women in the top quintile of risk score were, respectively, 20 and 50 times and significantly more likely to develop DM than those in the bottom quintile. The predictive value of the algorithm was validated in 2 split samples.
A marker of low grade inflammation provides useful predictive ability beyond other simple predictors in a female population with MetS prevailing. The derived simple algorithm may be useful in estimating the 8-yr risk of DM among middle-aged Turkish men and women.
由于种族会影响糖尿病的发病机制,因此需要有一种针对代谢综合征(MetS)高发人群的 2 型糖尿病(DM)风险预测算法。
在基线时无糖尿病的 2261 名中年土耳其成年人中,估计了 8 年的糖尿病风险,这些人随访时间超过 7.6 年。212 名受试者新发生了糖尿病。使用 Cox 比例风险回归和 15 个变量来预测糖尿病。通过接收者操作特征曲线下面积(AROC)评估区分度。
在多变量分析中,身高、家庭收入阶层、收缩压、吸烟状况、饮酒情况和高密度脂蛋白胆固醇水平在男女两性中均无预测性。除性别、糖尿病家族史、空腹血糖和腰围外,年龄和非高密度脂蛋白胆固醇是男性的预测指标,而在女性中,体力活动不足和血清 C 反应蛋白是预测指标。最终模型的 AROC 在男性中为 0.783,在女性中为 0.772(均<0.001)。为每个性别分别开发了一个使用上述 7 个变量的算法。处于风险评分最高五分位数的男性和女性分别是处于最低五分位数的 20 倍和 50 倍,且更有可能发生糖尿病,差异具有统计学意义。该算法的预测价值在 2 个拆分样本中得到了验证。
在代谢综合征流行的女性人群中,一种低度炎症标志物除了其他简单预测指标外,还提供了有用的预测能力。由此得出的简单算法可能有助于估计中年土耳其男女 8 年糖尿病风险。