The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723-6099, USA.
Opt Lett. 2010 Nov 1;35(21):3559-61. doi: 10.1364/OL.35.003559.
We propose a design for a free space optical communications (FSOC) receiver terminal that offers an improved field of view (FOV) in comparison to conventional FSOC receivers. The design utilizes a microlens to couple the incident optical signal into an individual fiber in a bundle routed to remote optical detectors. Each fiber in the bundle collects power from a solid angle of space; utilizing multiple fibers enhances the total FOV of the receiver over typical single-fiber designs. The microlens-to-fiber-bundle design is scalable and modular and can be replicated in an array to increase aperture size. The microlens is moved laterally with a piezoelectric transducer to optimize power coupling into a given fiber core in the bundle as the source appears to move due to relative motion between the transmitter and receiver. The optimum position of the lens array is determined via a feedback loop whose input is derived from a position sensing detector behind another lens. Light coupled into like fibers in each array cell is optically combined (in fiber) before illuminating discrete detectors.
我们提出了一种自由空间光通信(FSOC)接收器终端的设计方案,与传统的 FSOC 接收器相比,该方案具有更大的视场(FOV)。该设计利用微透镜将入射光信号耦合到路由到远程光探测器的光纤束中的单个光纤中。光纤束中的每根光纤从空间的立体角收集功率;利用多根光纤可以提高接收器的总视场,而不是典型的单光纤设计。微透镜到光纤束的设计是可扩展和模块化的,可以在阵列中复制以增加孔径尺寸。微透镜通过压电换能器横向移动,以优化将功率耦合到光纤束中给定光纤芯的过程,因为由于发射器和接收器之间的相对运动,光源似乎在移动。通过反馈回路确定透镜阵列的最佳位置,该反馈回路的输入来自另一透镜后面的位置感应探测器。在照亮离散探测器之前,每个阵列单元中的类似光纤耦合的光(在光纤中)进行光学组合。