Suppr超能文献

作为潜在抗焦虑剂的苯并咪唑衍生物的合成、表征及生物学评价

Synthesis, characterization, and biological evaluation of benzimidazole derivatives as potential anxiolytics.

作者信息

Nannapaneni Dt, Gupta Atyam Vsss, Reddy Mi, Sarva Raidu Ch

机构信息

Department of Pharmaceutical Chemistry, Mallareddy College of Pharmacy, Dhullapally Village, Hyderabad - 500 014, India.

出版信息

J Young Pharm. 2010 Jul;2(3):273-9. doi: 10.4103/0975-1483.66809.

Abstract

The synthesized benzimidazoles compounds were prepared from the condensation reaction between o-Phenylenediamine and various carbonyl compounds, in the presence of ammonium chloride as a catalyst. Ammonium chloride is a commercial and environmentally benign catalyst. The yield of all benzimidazole derivatives was found to be in the range of 75 - 94%. The purity of the compounds was ascertained by melting point and TLC. The synthesized compounds were characterized by using IR,(1)H NMR, and MASS spectral data together with elemental analysis. The synthesized benzimidazole compounds were screened for acute and chronic anti-anxiety activity in Wistar rats by using an elevated plus maze model with standard Diazepam. The synthesized compounds Z(B), Z(E), Z(F), Z(G), and Z(H) showed potent anti-anxiety activity when compared to the standard Diazepam. The compound Z(H) exhibited a higher anti-anxiety activity when compared to other prepared benzimidazoles. The results were subjected to statistical analysis by using one-way ANOVA followed by the Tukey-Kramer test, to calculate the significance.

摘要

合成的苯并咪唑化合物是由邻苯二胺与各种羰基化合物在氯化铵作为催化剂的存在下通过缩合反应制备而成。氯化铵是一种商业上常用且对环境无害的催化剂。所有苯并咪唑衍生物的产率在75%至94%的范围内。化合物的纯度通过熔点和薄层色谱法确定。合成的化合物通过红外光谱、核磁共振氢谱、质谱数据以及元素分析进行表征。通过使用高架十字迷宫模型和标准地西泮,对合成的苯并咪唑化合物在Wistar大鼠中进行急性和慢性抗焦虑活性筛选。与标准地西泮相比,合成的化合物Z(B)、Z(E)、Z(F)、Z(G)和Z(H)表现出强效抗焦虑活性。与其他制备的苯并咪唑相比,化合物Z(H)表现出更高的抗焦虑活性。通过使用单向方差分析随后进行Tukey-Kramer检验对结果进行统计分析,以计算显著性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d237/2964780/93c668484f1a/JYPharm-2-273-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验