Suppr超能文献

用具有内涵体释放功能的聚合物将蛋白抗原递送至细胞内,可增强 CD8+T 细胞的产生和预防性疫苗的效力。

Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy.

机构信息

Department of Bioengineering and Center for Intracellular Delivery of Biologics, University of Washington, Seattle Washington 98195, USA.

出版信息

Bioconjug Chem. 2010 Dec 15;21(12):2205-12. doi: 10.1021/bc100204m. Epub 2010 Nov 2.

Abstract

Protein-based vaccines have significant potential as infectious disease and anticancer therapeutics, but clinical impact has been limited in some applications by their inability to generate a coordinated cellular immune response. Here, a pH-responsive carrier incorporating poly(propylacrylic acid) (PPAA) was evaluated to test whether improved cytosolic delivery of a protein antigen could enhance CD8+ cytotoxic lymphocyte generation and prophylactic tumor vaccine responses. PPAA was directly conjugated to the model ovalbumin antigen via reducible disulfide linkages and was also tested in a particulate formulation after condensation with cationic poly(dimethylaminoethyl methacrylate) (PDMAEMA). Intracellular trafficking studies revealed that both PPAA-containing formulations were stably internalized and evaded exocytotic pathways, leading to increased intracellular accumulation and potential access to the cytosolic MHC-1 antigen presentation pathway. In an EG.7-OVA mouse tumor protection model, both PPAA-containing carriers robustly inhibited tumor growth and led to an approximately 3.5-fold increase in the longevity of tumor-free survival relative to controls. Mechanistically, this response was attributed to the 8-fold increase in production of ovalbumin-specific CD8+ T-lymphocytes and an 11-fold increase in production of antiovalbumin IgG. Significantly, this is one of the first demonstrated examples of in vivo immunotherapeutic efficacy using soluble protein-polymer conjugates. These results suggest that carriers enhancing cytosolic delivery of protein antigens could lead to more robust CD8+ T-cell response and demonstrate the potential of pH-responsive PPAA-based carriers for therapeutic vaccine applications.

摘要

蛋白质疫苗在传染病和抗癌治疗方面具有重要的潜力,但在某些应用中,由于其无法产生协调的细胞免疫反应,其临床效果受到限制。在这里,评估了一种 pH 响应载体,该载体包含聚丙基丙烯酸(PPAA),以测试蛋白质抗原的细胞内递送是否可以增强 CD8+细胞毒性淋巴细胞的产生和预防性肿瘤疫苗的反应。通过还原二硫键将 PPAA 直接偶联到模型卵清蛋白抗原上,并且还在与阳离子聚(二甲基氨基乙基甲基丙烯酸酯)(PDMAEMA)缩合后以颗粒制剂进行了测试。细胞内转运研究表明,含有 PPAA 的两种制剂都能稳定地被内化并逃避胞吐途径,从而导致细胞内积累增加,并有可能进入细胞溶质 MHC-1 抗原呈递途径。在 EG.7-OVA 小鼠肿瘤保护模型中,两种含有 PPAA 的载体都能强烈抑制肿瘤生长,并使无肿瘤存活的寿命延长约 3.5 倍,与对照组相比。从机制上讲,这种反应归因于卵清蛋白特异性 CD8+T 淋巴细胞的产生增加了 8 倍,以及抗卵清蛋白 IgG 的产生增加了 11 倍。值得注意的是,这是使用可溶性蛋白-聚合物缀合物在体内进行免疫治疗功效的首次证明之一。这些结果表明,增强蛋白质抗原细胞内递送的载体可以导致更强大的 CD8+T 细胞反应,并证明了基于 pH 响应性 PPAA 的载体在治疗性疫苗应用中的潜力。

相似文献

4
pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.
ACS Nano. 2013 May 28;7(5):3912-25. doi: 10.1021/nn305466z. Epub 2013 Apr 30.
6
Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines.
Biomaterials. 2018 Nov;182:82-91. doi: 10.1016/j.biomaterials.2018.07.052. Epub 2018 Jul 30.
9
Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming.
J Control Release. 2017 Jul 28;258:182-195. doi: 10.1016/j.jconrel.2017.05.014. Epub 2017 May 13.

引用本文的文献

1
Lytic polyplex vaccines enhance antigen-specific cytotoxic T cell response through induction of local cell death.
Adv Ther (Weinh). 2021 Aug;4(8). doi: 10.1002/adtp.202100005. Epub 2021 Feb 22.
2
Precise In Situ Delivery of a Photo-Enhanceable Inflammasome-Activating Nanovaccine Activates Anticancer Immunity.
Cancer Res. 2024 Nov 15;84(22):3834-3847. doi: 10.1158/0008-5472.CAN-24-0220.
3
Nasal Immunization Using Chitosan Nanoparticles with Glycoprotein B of Murine Cytomegalovirus.
J Microbiol Biotechnol. 2024 Mar 28;34(3):663-672. doi: 10.4014/jmb.2308.08008. Epub 2023 Dec 22.
4
Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications.
BME Front. 2024 Jan 25;5:0035. doi: 10.34133/bmef.0035. eCollection 2024.
5
Utilization of Stimuli-Responsive Biomaterials in the Formulation of Cancer Vaccines.
J Funct Biomater. 2023 Apr 28;14(5):247. doi: 10.3390/jfb14050247.
6
Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy.
Adv Sci (Weinh). 2023 Jun;10(18):e2301339. doi: 10.1002/advs.202301339. Epub 2023 Apr 23.
7
A mannosylated polymer with endosomal release properties for peptide antigen delivery.
J Control Release. 2023 Apr;356:232-241. doi: 10.1016/j.jconrel.2023.03.004. Epub 2023 Mar 8.
9
Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles.
Chem Sci. 2022 Nov 29;13(48):14346-14356. doi: 10.1039/d2sc00192f. eCollection 2022 Dec 14.
10
Dual-Responsive Glycopolymers for Intracellular Codelivery of Antigen and Lipophilic Adjuvants.
Mol Pharm. 2022 Dec 5;19(12):4705-4716. doi: 10.1021/acs.molpharmaceut.2c00750. Epub 2022 Nov 14.

本文引用的文献

3
Development of a novel endosomolytic diblock copolymer for siRNA delivery.
J Control Release. 2009 Feb 10;133(3):221-9. doi: 10.1016/j.jconrel.2008.10.004. Epub 2008 Oct 17.
8
Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives.
J Control Release. 2008 Feb 11;125(3):193-209. doi: 10.1016/j.jconrel.2007.09.013. Epub 2007 Oct 22.
9
Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier.
Biochem Biophys Res Commun. 2008 Feb 8;366(2):408-13. doi: 10.1016/j.bbrc.2007.11.153. Epub 2007 Dec 7.
10
Exploiting lymphatic transport and complement activation in nanoparticle vaccines.
Nat Biotechnol. 2007 Oct;25(10):1159-64. doi: 10.1038/nbt1332. Epub 2007 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验