Department of Biomedical Engineering, University of Mississippi, University, Mississippi 38677, United States.
Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States.
Mol Pharm. 2022 Dec 5;19(12):4705-4716. doi: 10.1021/acs.molpharmaceut.2c00750. Epub 2022 Nov 14.
Traditional approaches to vaccines use whole organisms to trigger an immune response, but they do not typically generate robust cellular-mediated immunity and have various safety risks. Subunit vaccines composed of proteins and/or peptides represent an attractive and safe alternative to whole organism vaccines, but they are poorly immunogenic. Though there are biological reasons for the poor immunogenicity of proteins and peptides, one other key to their relative lack of immunogenicity could be attributed to the poor pharmacokinetic properties of exogenously delivered proteins and peptides. For instance, peptides often aggregate at the site of injection and are not stable in biological fluids, proteins and peptides are rapidly cleared from circulation, and both have poor cellular internalization and endosomal escape. Herein, we developed a delivery system to address the lack of protein immunogenicity by overcoming delivery barriers as well as codelivering immune-stimulating adjuvants. The glycopolymeric nanoparticles (glycoNPs) are composed of a dual-stimuli-responsive block glycopolymer, poly[2-(diisopropylamino)ethyl methacrylate]--poly[(pyridyl disulfide ethyl methacrylate)--(methacrylamidoglucopyranose)] (p[DPA--(PDSMA--MAG)]). This polymer facilitates protein conjugation and cytosolic release, the pH-responsive release of lipophilic adjuvants, and pH-dependent membrane disruption to ensure cytosolic delivery of antigens. We synthesized p[DPA--(PDSMA--MAG)] by reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by the formation and physicochemical characterization of glycoNPs using the p[DPA--(PDSMA--MAG)] building blocks. These glycoNPs conjugated the model antigen ovalbumin (OVA) and released OVA in response to elevated glutathione levels. Moreover, the glycoNPs displayed pH-dependent drug release of the model hydrophobic drug Nile Red while also exhibiting pH-responsive endosomolytic behavior as indicated by a red blood cell hemolysis assay. GlycoNPs coloaded with OVA and the toll-like receptor 7/8 (TLR-7/8) agonist Resiquimod (R848) activated DC 2.4 dendritic cells (DCs) significantly more than free OVA and R848 and led to robust antigen presentation of the OVA epitope SIINFEKL on major histocompatibility complex I (MHC-I). In sum, the dual-stimuli-responsive glycopolymer introduced here overcomes major protein and peptide delivery barriers and could vastly improve the immunogenicity of protein-based vaccines.
传统的疫苗方法使用整个生物体来触发免疫反应,但它们通常不能产生强大的细胞介导免疫,并且存在各种安全风险。由蛋白质和/或肽组成的亚单位疫苗是整个生物体疫苗的一种有吸引力且安全的替代品,但它们的免疫原性较差。尽管蛋白质和肽的免疫原性差有生物学原因,但它们相对缺乏免疫原性的另一个关键原因可能是外源性递送至蛋白质和肽的药代动力学性质差。例如,肽通常在注射部位聚集,并且在生物流体中不稳定,蛋白质和肽从循环中迅速清除,并且两者都具有较差的细胞内化和内体逃逸。在此,我们开发了一种通过克服递药障碍和共递呈免疫刺激佐剂来解决蛋白质免疫原性缺乏的递药系统。糖聚合物纳米粒子(glycoNPs)由双刺激响应嵌段糖聚合物聚[2-(二异丙基氨基)乙基甲基丙烯酸酯]-聚[(吡啶二硫代乙基甲基丙烯酸酯)-(甲基丙烯酰胺葡萄糖)](p[DPA--(PDSMA--MAG)]组成。该聚合物促进蛋白质缀合和细胞质释放、亲脂性佐剂的 pH 响应释放以及 pH 依赖性膜破坏,以确保抗原的细胞质递呈。我们通过可逆加成-断裂链转移(RAFT)聚合合成了 p[DPA--(PDSMA--MAG)],然后使用 p[DPA--(PDSMA--MAG)]构建块形成并对 glycoNPs 进行理化特性表征。这些 glycoNPs 缀合了模型抗原卵清蛋白(OVA),并响应升高的谷胱甘肽水平释放 OVA。此外,glycoNPs 显示出模型疏水性药物尼罗红的 pH 依赖性药物释放,并且通过红细胞溶血测定表明具有 pH 响应的内体溶酶体行为。与游离 OVA 和 Toll 样受体 7/8(TLR-7/8)激动剂瑞喹莫德(R848)共载的 glycoNPs 显著比游离 OVA 和 R848 更能激活树突状细胞 2.4(DC 2.4)树突细胞(DCs),并导致主要组织相容性复合物 I(MHC-I)上 OVA 表位 SIINFEKL 的强大抗原呈递。总之,这里引入的双刺激响应糖聚合物克服了主要的蛋白质和肽递药障碍,并可以极大地提高基于蛋白质的疫苗的免疫原性。