Suppr超能文献

基于石油的燃料生命周期温室气体排放的不确定性分析及对低碳燃料政策的影响。

Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.

机构信息

Civil and Environmental Engineering Department, and Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213-3890, USA.

出版信息

Environ Sci Technol. 2011 Jan 1;45(1):125-31. doi: 10.1021/es102498a. Epub 2010 Nov 2.

Abstract

The climate change impacts of U.S. petroleum-based fuels consumption have contributed to the development of legislation supporting the introduction of low carbon alternatives, such as biofuels. However, the potential greenhouse gas (GHG) emissions reductions estimated for these policies using life cycle assessment methods are predominantly based on deterministic approaches that do not account for any uncertainty in outcomes. This may lead to unreliable and expensive decision making. In this study, the uncertainty in life cycle GHG emissions associated with petroleum-based fuels consumed in the U.S. is determined using a process-based framework and statistical modeling methods. Probability distributions fitted to available data were used to represent uncertain parameters in the life cycle model. Where data were not readily available, a partial least-squares (PLS) regression model based on existing data was developed. This was used in conjunction with probability mixture models to select appropriate distributions for specific life cycle stages. Finally, a Monte Carlo simulation was performed to generate sample output distributions. As an example of results from using these methods, the uncertainty range in life cycle GHG emissions from gasoline was shown to be 13%-higher than the typical 10% minimum emissions reductions targets specified by low carbon fuel policies.

摘要

美国石油基燃料消费的气候变化影响促使立法支持引入低碳替代品,如生物燃料。然而,使用生命周期评估方法为这些政策估计的潜在温室气体 (GHG) 减排量主要基于不考虑结果任何不确定性的确定性方法。这可能导致不可靠和昂贵的决策。在这项研究中,使用基于过程的框架和统计建模方法确定了与美国消耗的石油基燃料相关的生命周期 GHG 排放的不确定性。对可用数据进行拟合的概率分布用于表示生命周期模型中的不确定参数。在数据不易获得的情况下,基于现有数据开发了偏最小二乘 (PLS) 回归模型。该模型与概率混合模型结合使用,为特定的生命周期阶段选择合适的分布。最后,进行了蒙特卡罗模拟以生成样本输出分布。作为使用这些方法的结果示例,展示了汽油生命周期 GHG 排放的不确定性范围比低碳燃料政策规定的典型 10%最低减排目标高出 13%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验