Suppr超能文献

通过共聚焦 FRAP 分析结合扩散动力学的定量方法。

A quantitative approach to analyze binding diffusion kinetics by confocal FRAP.

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

Biophys J. 2010 Nov 3;99(9):2737-47. doi: 10.1016/j.bpj.2010.09.013.

Abstract

Most of the important types of interactions that occur in cells can be characterized as binding-diffusion type processes, and can be quantified by kinetic rate constants such as diffusion coefficients (D) and binding rate constants (k(on) and k(off)). Confocal FRAP is a potentially important tool for the quantitative analysis of intracellular binding-diffusion kinetics, but how to dependably extract accurate kinetic constants from such analyses is still an open question. To this end, in this study, we developed what we believe is a new analytical model for confocal FRAP-based measurements of intracellular binding-diffusion processes, based on a closed-form equation of the FRAP formula for a spot photobleach geometry. This approach incorporates a binding diffusion model that allows for diffusion of both the unbound and bound species, and also compensates for binding diffusion that occurs during photobleaching, a critical consideration in confocal FRAP analysis. In addition, to address the problem of parametric multiplicity, we propose a scheme to reduce the number of fitting parameters in the effective diffusion subregime when D's for the bound and unbound species are known. We validate this method by measuring kinetic rate constants for the CAAX-mediated binding of Ras to membranes of the endoplasmic reticulum, obtaining binding constants of k(on) ∼ 255/s and k(off) ∼ 31/s.

摘要

大多数发生在细胞中的重要相互作用类型可以被描述为结合-扩散类型的过程,并可以通过动力学速率常数来量化,如扩散系数 (D) 和结合速率常数 (k(on) 和 k(off))。共焦荧光漂白恢复 (FRAP) 是定量分析细胞内结合-扩散动力学的一种潜在重要工具,但如何从这些分析中可靠地提取准确的动力学常数仍然是一个悬而未决的问题。为此,在本研究中,我们开发了一种我们认为是基于封闭形式的 FRAP 公式的共焦 FRAP 测量的新分析模型,用于测量细胞内的结合-扩散过程。该方法结合了一个结合扩散模型,允许未结合和结合的物质扩散,并且还补偿了在光漂白过程中发生的结合扩散,这是共焦 FRAP 分析中的一个关键考虑因素。此外,为了解决参数多重性问题,我们提出了一种方案,当知道结合和未结合物质的 D 值时,在有效扩散子区域中减少拟合参数的数量。我们通过测量 CAAX 介导的 Ras 与内质网膜结合的动力学速率常数来验证这种方法,得到了 k(on) ∼ 255/s 和 k(off) ∼ 31/s 的结合常数。

相似文献

1
A quantitative approach to analyze binding diffusion kinetics by confocal FRAP.
Biophys J. 2010 Nov 3;99(9):2737-47. doi: 10.1016/j.bpj.2010.09.013.
3
Simplified equation to extract diffusion coefficients from confocal FRAP data.
Traffic. 2012 Dec;13(12):1589-600. doi: 10.1111/tra.12008. Epub 2012 Oct 10.
4
Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP).
Curr Protoc Cytom. 2012 Oct;Chapter 2:Unit2.19. doi: 10.1002/0471142956.cy0219s62.
5
Cross-validating FRAP and FCS to quantify the impact of photobleaching on in vivo binding estimates.
Biophys J. 2010 Nov 3;99(9):3093-101. doi: 10.1016/j.bpj.2010.08.059.
6
Accurate quantification of diffusion and binding kinetics of non-integral membrane proteins by FRAP.
Traffic. 2011 Nov;12(11):1648-57. doi: 10.1111/j.1600-0854.2011.01264.x. Epub 2011 Aug 30.
8
Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching.
Methods Mol Biol. 2012;833:153-76. doi: 10.1007/978-1-61779-477-3_11.
9
A closed-form analytic expression for FRAP formula for the binding diffusion model.
Biophys J. 2008 Jul;95(2):L13-5. doi: 10.1529/biophysj.108.135913. Epub 2008 May 16.
10
Confocal fluorescence recovery after photobleaching of green fluorescent protein in solution.
J Fluoresc. 2006 Jan;16(1):87-94. doi: 10.1007/s10895-005-0019-y. Epub 2006 Jan 6.

引用本文的文献

1
Transport Properties of Self-Assembling G-Hydrogels: Evidence for a Tunable Fickian Diffusivity.
J Phys Chem B. 2025 May 29;129(21):5136-5149. doi: 10.1021/acs.jpcb.5c00564. Epub 2025 May 15.
3
Exploring the role of macromolecular crowding and TNFR1 in cell volume control.
Elife. 2024 Sep 19;13:e92719. doi: 10.7554/eLife.92719.
4
Beyond analytic solution: Analysis of FRAP experiments by spatial simulation of the forward problem.
Biophys J. 2023 Sep 19;122(18):3722-3737. doi: 10.1016/j.bpj.2023.06.013. Epub 2023 Jun 23.
5
What's past is prologue: FRAP keeps delivering 50 years later.
Biophys J. 2023 Sep 19;122(18):3577-3586. doi: 10.1016/j.bpj.2023.05.016. Epub 2023 May 22.
7
Xist nucleates local protein gradients to propagate silencing across the X chromosome.
Cell. 2021 Dec 9;184(25):6174-6192.e32. doi: 10.1016/j.cell.2021.10.022. Epub 2021 Nov 4.
9
Self-sorting in supramolecular assemblies.
Soft Matter. 2021 Apr 14;17(14):3902-3912. doi: 10.1039/d1sm00113b. Epub 2021 Mar 11.
10
DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks.
J Microsc. 2021 May;282(2):146-161. doi: 10.1111/jmi.12989. Epub 2021 Jan 16.

本文引用的文献

1
Signalling ballet in space and time.
Nat Rev Mol Cell Biol. 2010 Jun;11(6):414-26. doi: 10.1038/nrm2901.
2
FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know?
Curr Opin Cell Biol. 2010 Jun;22(3):403-11. doi: 10.1016/j.ceb.2010.03.002. Epub 2010 Apr 21.
3
Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3.
PLoS One. 2010 Mar 23;5(3):e9806. doi: 10.1371/journal.pone.0009806.
4
Spatiotemporal characteristics of calcium dynamics in astrocytes.
Chaos. 2009 Sep;19(3):037116. doi: 10.1063/1.3206698.
6
Shuttling and translocation of heterotrimeric G proteins and Ras.
Trends Pharmacol Sci. 2009 Jun;30(6):278-86. doi: 10.1016/j.tips.2009.04.001. Epub 2009 May 6.
8
Uncoupling diffusion and binding in FRAP experiments.
Nat Methods. 2009 Mar;6(3):183; author reply 183-4. doi: 10.1038/nmeth0309-183a.
9
The diffusive interaction of microtubule binding proteins.
Curr Opin Cell Biol. 2009 Feb;21(1):68-73. doi: 10.1016/j.ceb.2009.01.005. Epub 2009 Jan 29.
10
Investigation of binding mechanisms of nuclear proteins using confocal scanning laser microscopy and FRAP.
J Theor Biol. 2008 Aug 21;253(4):755-68. doi: 10.1016/j.jtbi.2008.04.010. Epub 2008 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验