Biomedical Engineering and Biotechnology, Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Toxicol In Vitro. 2011 Feb;25(1):185-90. doi: 10.1016/j.tiv.2010.10.017. Epub 2010 Oct 31.
Although, nanometer-scale semi-conductor quantum dots (QDs) have attracted widespread interest in medical diagnosis and treatment, many can have intrinsic toxicities, especially those composed of CdSe, associated with their elemental composition. Using our self-assembling nanoemulsion (SANE) formulations which we have previously reported to be composed of non-toxic components, i.e., such as vegetable oil, surfactant and water, we hypothesized that their appropriate utilization would reduce the toxicity of QDs by encapsulating the CdSe QDs in our (SANE) system using a modified phase-inversion temperature (PIT) method. SANE encapsulation of the QDs did not alter their emission wavelength of 600nm which remained unchanged during the encapsulation process. In contrast, zeta potential of encapsulated QDs was reduced from -30 to -6.59 mV, which we have previously reported to be associated with beneficial properties (increased bioavailability and efficacy) for SANE-encapsulated bioactives such as pharmaceuticals. Relative to the untreated controls, the viability of HeLa cells exposed for 48 h to un-encapsulated CdSe QDs at a concentration of 115 μg/mL was 22.7±1.7% (p<0.05). In contrast, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs at the same concentration was 91.6±3.5% (p<0.05) or a 307% increase in the number of viable cells (p<0.05). When the dose of CdSe QDs was increased to 230 μg/mL, the percentage of viable HeLa cells after exposure to the un-encapsulated CdSe QDs was 16.1±1.3% compared to controls (p<0.05). In contrast, at the same increased concentration (230 μg/mL) of un-encapsulated CdSe QDs, the percentage of viable HeLa cells following exposure to SANE-encapsulated CdSe QDs was 87.9±3.3% relative to controls (p<0.05) or a 448% increase in the number of viable cells (p<0.05). Exposure of HeLa cells to a nanoblank, (nanoemulsion without QDs), showed no significant effect on cell viability (97.2±2.5%) compared to control cell culture. In conclusion, application of our SANE technology for encapsulating QDs increased cell viability of cells exposed to CdSe QDs while maintaining the original emission wavelength and therefore may be applied to reduce QD toxicity.
尽管纳米级半导体量子点(QD)在医学诊断和治疗中引起了广泛关注,但许多 QD 具有内在的毒性,特别是那些由 CdSe 组成的 QD,这与其元素组成有关。我们利用之前报道过的由非毒性成分组成的自组装纳米乳液(SANE)制剂,假设通过使用改良的相转变温度(PIT)方法将 CdSe QD 封装在我们的(SANE)系统中,将减少 QD 的毒性。QD 的 SANE 封装并未改变其 600nm 的发射波长,在封装过程中保持不变。相比之下,封装 QD 的 zeta 电位从-30 降低至-6.59mV,我们之前曾报道过这种 zeta 电位与 SANE 封装生物活性物质(如药物)的有益特性(增加生物利用度和功效)有关。与未经处理的对照组相比,浓度为 115μg/ml 的未封装 CdSe QD 暴露 48 小时后 HeLa 细胞的存活率为 22.7±1.7%(p<0.05)。相比之下,在相同浓度下暴露于 SANE 封装的 CdSe QD 后,HeLa 细胞的存活率为 91.6±3.5%(p<0.05)或存活细胞数量增加 307%(p<0.05)。当 CdSe QD 的剂量增加到 230μg/ml 时,与对照组相比(p<0.05),暴露于未封装 CdSe QD 的 HeLa 细胞的存活率为 16.1±1.3%。相比之下,在相同的高浓度(230μg/ml)下,暴露于 SANE 封装的 CdSe QD 后,HeLa 细胞的存活率为 87.9±3.3%,与对照组相比(p<0.05)或存活细胞数量增加 448%(p<0.05)。暴露于纳米空白(无 QD 的纳米乳液)的 HeLa 细胞对细胞活力没有显著影响(97.2±2.5%)与对照细胞培养相比。总之,我们的 SANE 技术用于封装 QD 增加了暴露于 CdSe QD 的细胞的细胞活力,同时保持了原始发射波长,因此可用于降低 QD 的毒性。