Hagervall T G, Jönsson Y H, Edmonds C G, McCloskey J A, Björk G R
Department of Microbiology, Umeå University, Sweden.
J Bacteriol. 1990 Jan;172(1):252-9. doi: 10.1128/jb.172.1.252-259.1990.
Chorismic acid is the common precursor for the biosynthesis of the three aromatic amino acids as well as for four vitamins. Mutants of Escherichia coli defective in any of the genes involved in the synthesis of chorismic acid are also unable to synthesize uridine 5-oxyacetic acid (cmo5U) and its methyl ester (mcmo5U). Both modified nucleosides are normally present in the wobble position of some tRNA species. Mutants defective in any of the specific pathways leading to phenylalanine, tyrosine, tryptophan, folate, enterochelin, ubiquinone, and menaquinone have normal levels of cmo5U and mcmo5U in their tRNA. The presence of shikimic acid in the growth medium restores the ability of an aroD mutant to synthesize cmo5U, while O-succinylbenzoate, which is an early intermediate in the synthesis of menaquinone, does not. Thus, chorismic acid is a key metabolite in the synthesis of these two modified nucleosides in tRNA. The absence of chorismic acid blocks the formation of cmo5U and mcmo5U at the first step, which might be the formation of 5-hydroxyuridine. This results in an unmodified U in the wobble position of tRNA(1Val) and in most of the tRNAs normally containing cmo5U and mcmo5U. Since cmo5U and mcmo5U are synthesized under anaerobic conditions, the formation of these nucleosides does not require molecular oxygen. One of the carbon atoms of the side chain, --O--CH2--COOH, originates from the methyl group of methionine. The other carbon atom does not originate directly from the C-1 pool, from the carboxyl group methionine, or from bicarbonate. This metabolic link between intermediary metabolism and translation also exists for another member of the family Enterobacteriaceae, Salmonella typhimurium, as well as for the distantly related gram-positive organism Bacillus subtilis.
分支酸是三种芳香族氨基酸以及四种维生素生物合成的共同前体。参与分支酸合成的任何基因存在缺陷的大肠杆菌突变体也无法合成尿苷5 - 氧乙酸(cmo5U)及其甲酯(mcmo5U)。这两种修饰核苷通常存在于某些tRNA种类的摆动位置。在导致苯丙氨酸、酪氨酸、色氨酸、叶酸、肠螯合素、泛醌和甲基萘醌的任何特定途径中存在缺陷的突变体,其tRNA中的cmo5U和mcmo5U水平正常。生长培养基中莽草酸的存在恢复了aroD突变体合成cmo5U的能力,而作为甲基萘醌合成早期中间体的O - 琥珀酰苯甲酸则不能。因此,分支酸是tRNA中这两种修饰核苷合成的关键代谢物。分支酸的缺失在第一步就阻止了cmo5U和mcmo5U的形成,这一步可能是5 - 羟基尿苷形成。这导致tRNA(1Val)以及大多数通常含有cmo5U和mcmo5U的tRNA的摆动位置出现未修饰的U。由于cmo5U和mcmo5U是在厌氧条件下合成的,这些核苷的形成不需要分子氧。侧链的一个碳原子,即--O--CH2--COOH,源自甲硫氨酸的甲基。另一个碳原子并非直接源自C - 1库、甲硫氨酸的羧基或碳酸氢盐。这种中间代谢与翻译之间的代谢联系在肠杆菌科的另一个成员鼠伤寒沙门氏菌以及远缘的革兰氏阳性菌枯草芽孢杆菌中也存在。