Suppr超能文献

使用多单元记录与单单元记录评估跨肌肉相干性。

Assessment of across-muscle coherence using multi-unit vs. single-unit recordings.

机构信息

Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.

出版信息

Exp Brain Res. 2010 Dec;207(3-4):269-82. doi: 10.1007/s00221-010-2455-4. Epub 2010 Nov 3.

Abstract

Coherence between electromyographic (EMG) signals has been used to identify correlated neural inputs to motor units (MUs) innervating different muscles. Simulations using a motor-unit model (Fuglevand et al. 1992) were performed to determine the ability of coherence between two multi-unit EMGs (mEMG) to detect correlated MU activity and the range of correlation strengths in which mEMG coherence can be usefully employed. Coherence between motor-unit and mEMG activities in two muscles was determined as we varied the strength of a 30-Hz periodic common input, the number of correlated MU pairs and variability of MU discharge relative to the common input. Pooled and mEMG coherence amplitudes positively and negatively accelerated, respectively, toward the strongest and most widespread correlating inputs. Furthermore, the relation between pooled and mEMG coherence was also nonlinear and was essentially the same whether correlation strength varied by changing common input strength or its distribution. However, the most important finding is that while the mEMG coherence saturates at the strongest common input strengths, this occurs at common input strengths greater than found in most physiological studies. Thus, we conclude that mEMG coherence would be a useful measure in many experimental conditions and our simulation results suggest further guidelines for using and interpreting coherence between mEMG signals.

摘要

肌电图(EMG)信号之间的相干性已被用于识别支配不同肌肉的运动单位(MU)的相关神经输入。使用运动单位模型(Fuglevand 等人,1992 年)进行了模拟,以确定两个多单元 EMG(mEMG)之间相干性检测相关 MU 活动的能力以及相干性可有效应用的相关 MU 活动的相关强度范围。当我们改变 30Hz 周期性公共输入的强度、相关 MU 对的数量以及 MU 放电相对于公共输入的变异性时,确定了两个肌肉中运动单位和 mEMG 活动之间的相干性。池化和 mEMG 相干性幅度分别正向和负向加速,分别朝向最强和最广泛的相关输入。此外,池化和 mEMG 相干性之间的关系也是非线性的,无论通过改变公共输入强度还是其分布来改变相关强度,其关系基本相同。然而,最重要的发现是,虽然 mEMG 相干性在最强的公共输入强度处饱和,但这种情况发生在比大多数生理研究中发现的更强的公共输入强度处。因此,我们得出结论,mEMG 相干性将是许多实验条件下有用的测量指标,我们的模拟结果进一步为使用和解释 mEMG 信号之间的相干性提供了指导。

相似文献

8
Coherence between motor unit discharges in response to shared neural inputs.运动单位放电之间对共享神经输入的反应的一致性。
J Neurosci Methods. 2007 Jul 30;163(2):384-91. doi: 10.1016/j.jneumeth.2007.03.011. Epub 2007 Mar 24.

引用本文的文献

2
Modifying motor unit territory placement in the Fuglevand model.修改 Fuglevand 模型中的运动单位领地安置。
Med Biol Eng Comput. 2017 Nov;55(11):2015-2025. doi: 10.1007/s11517-017-1645-7. Epub 2017 Apr 8.
3
Neural bases of hand synergies.手协同作用的神经基础。
Front Comput Neurosci. 2013 Apr 8;7:23. doi: 10.3389/fncom.2013.00023. eCollection 2013.

本文引用的文献

2
Neural control of hand muscles during prehension.抓握过程中手部肌肉的神经控制。
Adv Exp Med Biol. 2009;629:577-96. doi: 10.1007/978-0-387-77064-2_31.
5
Coherence between motor unit discharges in response to shared neural inputs.运动单位放电之间对共享神经输入的反应的一致性。
J Neurosci Methods. 2007 Jul 30;163(2):384-91. doi: 10.1016/j.jneumeth.2007.03.011. Epub 2007 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验