Laboratory of Neuropharmacology, Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35205, USA.
J Neurosci Res. 2011 Jan;89(1):58-72. doi: 10.1002/jnr.22526.
Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity.
神经元非细胞因子依赖性 p50/p65 核因子-κB(大脑中主要的 NF-κB 复合物)的激活已被证明具有神经保护作用。因此,NF-κB 的神经元激活可能代表一种可行的神经保护靶标。我们开发了一种基于细胞的测定法,能够检测 NF-κB 表达增强,并且通过使用该方法,我们已经鉴定出能够上调 NF-κB 表达并因此触发其在神经元中激活的小分子。我们已经成功筛选了大约 300,000 种化合物,并鉴定出 1,647 种活性化合物。命中人群中结构的聚类分析产生了 14 个丰富的化学支架。从这 14 个支架中的每一个和四个单峰结构中选择了一个高潜力和有吸引力的代表性化合物进行后续研究。这里描述的实验强调了七种化合物在原代星形胶质细胞中引起非典型的持久 NF-κB 激活。分子 NF-κB 对接实验表明,化合物可以通过增强 NF-κB 与其自身启动子的结合来调节 NF-κB 诱导的 NF-κB 表达。原型化合物增加了神经元中的 p65 表达并导致其核易位,而不影响 NF-κB 的抑制剂(I-κB)。其中一种原型化合物导致谷氨酸诱导的神经元死亡大量减少。总之,我们提供了证据表明,我们可以使用小分子以细胞因子受体独立的方式激活神经元中的 p65 NF-κB 表达,这导致持久的 p65 NF-κB 易位/激活和减少谷氨酸神经毒性。