Schneider Erich H, Seifert Roland
Laboratory of Molecular Immunology, NIAID/NIH, Bethesda, Maryland, USA.
Methods Enzymol. 2010;485:459-80. doi: 10.1016/B978-0-12-381296-4.00025-7.
In many cases, the coexpression of GPCRs with G-proteins and/or regulators of G-protein signaling (RGS-proteins) allows a successful reconstitution of high-affinity agonist binding and functional responses. However, in some cases, coexpressed GPCRs and G-proteins interact inefficiently, resulting in weak [³⁵S]GTPγS- and steady-state GTPase assay signals. This may be, for example, caused by a rapid dissociation of the G-protein from the plasma membrane, as has been reported for Gα(s). Moreover, for a detailed characterization of GPCR/G-protein interactions, it may be required to work with a defined GPCR/G-protein stoichiometry and to avoid cross-interaction with endogenous G-proteins. Cross-talk to endogenous G-proteins has been shown to play a role in some mammalian expression systems. These problems can be addressed by the generation of GPCR-Gα fusion proteins and their expression in Sf9 insect cells. When the C-terminus of the receptor is fused to the N-terminus of the G-protein, a 1:1 stoichiometry of both proteins is achieved. In addition, the close proximity of GPCR and G-protein in fusion proteins leads to enhanced interaction efficiency, resulting in increased functional signals. This approach can also be extended to fusion proteins of GPCRs with RGS-proteins, specifically when steady-state GTP hydrolysis is used as read-out. GPCR-RGS fusion proteins optimize the interaction of RGS-proteins with coexpressed Gα subunits, since the location of the RGS-protein is close to the site of receptor-mediated G-protein activation. Moreover, in contrast to coexpression systems, GPCR-Gα and GPCR-RGS fusion proteins provide a possibility to imitate physiologically occurring interactions, for example, the precoupling of receptors and G-proteins or the formation of complexes between GPCRs, G-proteins and RGS-proteins (transducisomes). In this chapter, we describe the technique for the generation of fusion proteins and show the application of this approach for the characterization of constitutively active receptors.
在许多情况下,G蛋白偶联受体(GPCR)与G蛋白和/或G蛋白信号调节剂(RGS蛋白)的共表达能够成功重建高亲和力激动剂结合和功能反应。然而,在某些情况下,共表达的GPCR和G蛋白相互作用效率低下,导致[³⁵S]GTPγS信号微弱以及稳态GTP酶分析信号微弱。例如,这可能是由于G蛋白从质膜快速解离所致,如已报道的Gα(s)的情况。此外,为了详细表征GPCR/G蛋白相互作用,可能需要使用确定的GPCR/G蛋白化学计量,并避免与内源性G蛋白发生交叉相互作用。已证明与内源性G蛋白的串扰在一些哺乳动物表达系统中起作用。这些问题可以通过生成GPCR-Gα融合蛋白并在Sf9昆虫细胞中表达来解决。当受体的C末端与G蛋白的N末端融合时,两种蛋白可实现1:1的化学计量。此外,融合蛋白中GPCR和G蛋白的紧密接近导致相互作用效率增强,从而使功能信号增加。这种方法还可以扩展到GPCR与RGS蛋白的融合蛋白,特别是当使用稳态GTP水解作为读出指标时。GPCR-RGS融合蛋白优化了RGS蛋白与共表达的Gα亚基的相互作用,因为RGS蛋白的位置靠近受体介导的G蛋白激活位点。此外,与共表达系统不同,GPCR-Gα和GPCR-RGS融合蛋白提供了模仿生理发生的相互作用的可能性,例如,受体与G蛋白的预偶联或GPCR、G蛋白和RGS蛋白之间复合物(转导小体)的形成。在本章中,我们描述了融合蛋白的生成技术,并展示了这种方法在组成型活性受体表征中的应用。