Department of Chemistry, Washington University, One Brookings Dr., Campus Box 1134 Saint Louis, Missouri 63130, USA.
J Chem Phys. 2010 Nov 7;133(17):174311. doi: 10.1063/1.3493349.
We present a comprehensive photoelectron imaging study of the O(2)(X (3)Σ(g)(-),v(')=0-6)←O(2)(-)(X (2)Π(g),v(")=0) and O(2)(a (1)Δ(g),v(')=0-4)←O(2)(-)(X (2)Π(g),v(")=0) photodetachment bands at wavelengths between 900 and 455 nm, examining the effect of vibronic coupling on the photoelectron angular distribution (PAD). This work extends the v(')=1-4 data for detachment into the ground electronic state, presented in a recent communication [R. Mabbs, F. Mbaiwa, J. Wei, M. Van Duzor, S. T. Gibson, S. J. Cavanagh, and B. R. Lewis, Phys. Rev. A 82, 011401(R) (2010)]. Measured vibronic intensities are compared to Franck-Condon predictions and used as supporting evidence of vibronic coupling. The results are analyzed within the context of the one-electron, zero core contribution (ZCC) model [R. M. Stehman and S. B. Woo, Phys. Rev. A 23, 2866 (1981)]. For both bands, the photoelectron anisotropy parameter variation with electron kinetic energy, β(E), displays the characteristics of photodetachment from a d-like orbital, consistent with the π(g)(∗) 2p highest occupied molecular orbital of O(2)(-). However, differences exist between the β(E) trends for detachment into different vibrational levels of the X (3)Σ(g)(-) and a (1)Δ(g) electronic states of O(2). The ZCC model invokes vibrational channel specific "detachment orbitals" and attributes this behavior to coupling of the electronic and nuclear motion in the parent anion. The spatial extent of the model detachment orbital is dependent on the final state of O(2): the higher the neutral vibrational excitation, the larger the electron binding energy. Although vibronic coupling is ignored in most theoretical treatments of PADs in the direct photodetachment of molecular anions, the present findings clearly show that it can be important. These results represent a benchmark data set for a relatively simple system, upon which to base rigorous tests of more sophisticated models.
我们呈现了一个全面的光电子成像研究,研究对象是 O(2)(X (3)Σ(g)(-),v(')=0-6)←O(2)(-)(X (2)Π(g),v(")=0) 和 O(2)(a (1)Δ(g),v(')=0-4)←O(2)(-)(X (2)Π(g),v(")=0) 光致脱附带,波长范围在 900 到 455nm 之间,考察了振动态耦合对光电子角分布(PAD)的影响。这项工作将最近的通讯中报道的 O(2)(-)(X (2)Π(g),v(")=0) 光致脱附到基电子态的 v(')=1-4 数据扩展进来[R. Mabbs, F. Mbaiwa, J. Wei, M. Van Duzor, S. T. Gibson, S. J. Cavanagh, and B. R. Lewis, Phys. Rev. A 82, 011401(R) (2010)]。测量的振动态强度与 Franck-Condon 预测进行了比较,并作为振动态耦合的支持证据。结果在单电子零核贡献(ZCC)模型的框架内进行了分析[R. M. Stehman 和 S. B. Woo, Phys. Rev. A 23, 2866 (1981)]。对于两个带,电子动能的光电子各向异性参数变化,β(E),显示出从 d 型轨道光致脱附的特征,与 O(2)(-)的π(g)(∗)2p 最高占据分子轨道一致。然而,在 X (3)Σ(g)(-)和 a (1)Δ(g)电子态的不同振动能级的 O(2)的 β(E)趋势之间存在差异。ZCC 模型利用振动通道特定的“脱附轨道”,并将这种行为归因于母阴离子中电子和核运动的耦合。模型脱附轨道的空间范围取决于 O(2)的终态:中性振动激发越高,电子结合能越大。尽管振动态耦合在大多数分子阴离子直接光致脱附的 PAD 理论处理中被忽略,但目前的发现清楚地表明,它可能很重要。这些结果代表了一个相对简单系统的基准数据集,可以在此基础上对更复杂的模型进行严格测试。