Bio-Crops Development Division, National Academy of Agricultural Sciences, Suwon, Republic of Korea.
Phytochemistry. 2011 Jan;72(1):27-36. doi: 10.1016/j.phytochem.2010.10.005. Epub 2010 Nov 4.
OREB1 is a rice ABRE binding factor characterized by the presence of multiple highly-conserved phosphorylation domains (C1, C2, C3, and C4) and two kinase recognition motifs, RXXS/T and S/TXXE/D, within different functional domains. An in vitro kinase assay showed that OREB1 is phosphorylated not only by the SnRK2 kinase, but also by other Ser/Thr protein kinases, such as CaMKII, CKII, and SnRK3. Furthermore, the N-terminal phosphorylation domain C1 was found to be differentially phosphorylated by the SnRK2/SnRK3 kinase and by hyperosmotic/cold stress, suggesting that the C1 domain may function in decoding different signals. The phosphorylation-mediated regulation of OREB1 activity was investigated through mutation of the SnRK2 recognition motif RXXS/T within each phosphorylation module. OREB1 contains a crucial nine-amino acid transactivation domain located near the phosphorylation module C1. Deletion of the C1 domain increased OREB1 activity, whereas mutation of Ser 44, Ser 45, and Ser 48 of the C1 domain to aspartates decreased OREB1 activity. In the C2 domain, a double mutation of Ser 118 and Ser 120 to alanines suppressed OREB1 activity. These findings strongly suggest that selective phosphorylation of the C1 or C2 modules may positively or negatively regulate OREB1 transactivation. In addition, mutation of Ser 385 of the C4 domain to alanines completely abolished the interaction between OREB1 and a rice 14-3-3 protein, GF14d, suggesting that SnRK2-mediated phosphorylation may regulate this interaction. These results indicate that phosphorylation domains of OREB1 are not functionally redundant and regulate at least three different functions, including transactivation activity, DNA binding, and protein interactions. The multisite phosphorylation of OREB1 is likely a key for the fine control of its activity and signal integration in the complex stress signaling network of plant cells.
OREB1 是一种水稻 ABRE 结合因子,其特征在于存在多个高度保守的磷酸化结构域(C1、C2、C3 和 C4)和两个激酶识别基序,即 RXXS/T 和 S/TXXE/D,位于不同的功能结构域内。体外激酶实验表明,OREB1 不仅被 SnRK2 激酶磷酸化,还被其他丝氨酸/苏氨酸蛋白激酶如 CaMKII、CKII 和 SnRK3 磷酸化。此外,发现 N 端磷酸化结构域 C1 被 SnRK2/SnRK3 激酶和高渗/冷胁迫以不同的方式磷酸化,表明 C1 结构域可能在解码不同信号中起作用。通过突变每个磷酸化模块中的 SnRK2 识别基序 RXXS/T,研究了 OREB1 活性的磷酸化调节。OREB1 含有一个位于磷酸化结构域 C1 附近的关键九氨基酸转录激活结构域。C1 结构域缺失增加了 OREB1 的活性,而 C1 结构域中 Ser44、Ser45 和 Ser48 突变为天冬氨酸则降低了 OREB1 的活性。在 C2 结构域中,Ser118 和 Ser120 突变为丙氨酸的双突变抑制了 OREB1 的活性。这些发现强烈表明,C1 或 C2 模块的选择性磷酸化可能正向或负向调节 OREB1 的转录激活。此外,C4 结构域中 Ser385 突变为丙氨酸完全消除了 OREB1 与水稻 14-3-3 蛋白 GF14d 之间的相互作用,表明 SnRK2 介导的磷酸化可能调节这种相互作用。这些结果表明,OREB1 的磷酸化结构域不是功能冗余的,至少调节三种不同的功能,包括转录激活活性、DNA 结合和蛋白相互作用。OREB1 的多位点磷酸化可能是其在植物细胞复杂应激信号网络中精细调控其活性和信号整合的关键。