Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20275-80. doi: 10.1073/pnas.1009860107. Epub 2010 Nov 5.
Most histone acetyltransferases (HATs) function as multisubunit complexes in which accessory proteins regulate substrate specificity and catalytic efficiency. Rtt109 is a particularly interesting example of a HAT whose specificity and catalytic activity require association with either of two histone chaperones, Vps75 or Asf1. Here, we utilize biochemical, structural, and genetic analyses to provide the detailed molecular mechanism for activation of a HAT (Rtt109) by its activating subunit Vps75. The rate-determining step of the activated complex is the transfer of the acetyl group from acetyl CoA to the acceptor lysine residue. Vps75 stimulates catalysis (> 250-fold), not by contributing a catalytic base, but by stabilizing the catalytically active conformation of Rtt109. To provide structural insight into the functional complex, we produced a molecular model of Rtt109-Vps75 based on X-ray diffraction of crystals of the complex. This model reveals distinct negative electrostatic surfaces on an Rtt109 molecule that interface with complementary electropositive ends of a symmetrical Vps75 dimer. Rtt109 variants with interface point substitutions lack the ability to be fully activated by Vps75, and one such variant displayed impaired Vps75-dependent histone acetylation functions in yeast, yet these variants showed no adverse effect on Asf1-dependent Rtt109 activities in vitro and in vivo. Finally, we provide evidence for a molecular model in which a 12 complex of Rtt109-Vps75 acetylates a heterodimer of H3-H4. The activation mechanism of Rtt109-Vps75 provides a valuable framework for understanding the molecular regulation of HATs within multisubunit complexes.
大多数组蛋白乙酰转移酶 (HATs) 作为多亚基复合物发挥作用,其中辅助蛋白调节底物特异性和催化效率。Rtt109 是 HAT 的一个特别有趣的例子,其特异性和催化活性需要与两个组蛋白伴侣之一 Vps75 或 Asf1 结合。在这里,我们利用生化、结构和遗传分析为 HAT(Rtt109)被其激活亚基 Vps75 激活的详细分子机制提供了依据。激活复合物的速率决定步骤是乙酰辅酶 A 中的乙酰基转移到受体赖氨酸残基上。Vps75 刺激催化作用(>250 倍),不是通过提供催化碱,而是通过稳定 Rtt109 的催化活性构象。为了提供对功能复合物的结构见解,我们基于复合物晶体的 X 射线衍射产生了 Rtt109-Vps75 的分子模型。该模型揭示了 Rtt109 分子上的独特负静电表面,该表面与对称 Vps75 二聚体的互补正电端相互作用。具有界面点取代的 Rtt109 变体缺乏被 Vps75 完全激活的能力,并且这样的变体在酵母中显示出对 Vps75 依赖性组蛋白乙酰化功能的损害,但这些变体在体外和体内对 Asf1 依赖性 Rtt109 活性没有不利影响。最后,我们提供了证据表明,一个由 12 个 Rtt109-Vps75 组成的复合物可以乙酰化 H3-H4 的异二聚体。Rtt109-Vps75 的激活机制为理解多亚基复合物中 HAT 的分子调控提供了有价值的框架。