Suppr超能文献

细菌细胞骨架超结构及其物理起源。

Bacterial cytoskeleton suprastructures and their physical origin.

作者信息

Popp David, Robinson Robert C

机构信息

Institute of Molecular and Cell Biology; Bioplolis Drive; Proteos, Singapore Singapore.

出版信息

Commun Integr Biol. 2010 Sep;3(5):451-3. doi: 10.4161/cib.3.5.12340.

Abstract

Bacterial cytoskeletal filamentous proteins, like their eukaryotic counterparts, are key regulators and central organizers of many cellular processes including morphogenesis, cell division, DNA segregation and movement. Such filaments often organize themselves into complex structures within the prokaryotic cell, driven by molecular crowding and cation association, to form bundles (ParM), rings, toroids and helical spirals (FtsZ) or interwoven sheets (MreB). The formation of complex structures is essential for bacterial cytoskeleton function. Here, we highlight the suprastructures of the prokaryotic cytoskeleton that have been observed by high resolution in vitro electron microscopy and set them in perspective with in vivo observations. We discuss the underlying physical principles that lead to complex structure formation.

摘要

细菌细胞骨架丝状蛋白与其真核生物对应物一样,是许多细胞过程的关键调节因子和核心组织者,这些过程包括形态发生、细胞分裂、DNA分离和移动。在分子拥挤和阳离子结合的驱动下,此类细丝通常在原核细胞内自行组织成复杂结构,形成束状(ParM)、环状、环形和螺旋状螺旋(FtsZ)或交织片层(MreB)。复杂结构的形成对于细菌细胞骨架功能至关重要。在这里,我们重点介绍了通过高分辨率体外电子显微镜观察到的原核细胞骨架超结构,并结合体内观察结果对其进行了透视。我们讨论了导致复杂结构形成的潜在物理原理。

相似文献

1
Bacterial cytoskeleton suprastructures and their physical origin.
Commun Integr Biol. 2010 Sep;3(5):451-3. doi: 10.4161/cib.3.5.12340.
2
Many ways to build an actin filament.
Mol Microbiol. 2011 Apr;80(2):300-8. doi: 10.1111/j.1365-2958.2011.07599.x. Epub 2011 Mar 14.
3
FtsZ condensates: an in vitro electron microscopy study.
Biopolymers. 2009 May;91(5):340-50. doi: 10.1002/bip.21136.
4
Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ.
J Biol Chem. 2010 Apr 9;285(15):11281-9. doi: 10.1074/jbc.M109.084079. Epub 2010 Feb 5.
5
Increasing complexity of the bacterial cytoskeleton.
Curr Opin Cell Biol. 2005 Feb;17(1):75-81. doi: 10.1016/j.ceb.2004.11.002.
6
Molecular mechanism of bundle formation by the bacterial actin ParM.
Biochem Biophys Res Commun. 2010 Jan 22;391(4):1598-603. doi: 10.1016/j.bbrc.2009.12.078. Epub 2009 Dec 22.
7
The bacterial actin-like cytoskeleton.
Microbiol Mol Biol Rev. 2006 Dec;70(4):888-909. doi: 10.1128/MMBR.00014-06.
8
Supramolecular cellular filament systems: how and why do they form?
Cytoskeleton (Hoboken). 2012 Feb;69(2):71-87. doi: 10.1002/cm.21006. Epub 2012 Jan 30.
9
Duplication and segregation of the actin (MreB) cytoskeleton during the prokaryotic cell cycle.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17795-800. doi: 10.1073/pnas.0708739104. Epub 2007 Oct 31.
10
The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics?
Appl Microbiol Biotechnol. 2006 Nov;73(1):37-47. doi: 10.1007/s00253-006-0586-0. Epub 2006 Oct 6.

本文引用的文献

1
When, why, and how does like like like?: Electrostatic attraction between similarly charged species.
Proc Jpn Acad Ser B Phys Biol Sci. 2007 Nov;83(7):192-8. doi: 10.2183/pjab/83.192.
2
Filament structure, organization, and dynamics in MreB sheets.
J Biol Chem. 2010 May 21;285(21):15858-65. doi: 10.1074/jbc.M109.095901. Epub 2010 Mar 11.
3
Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ.
J Biol Chem. 2010 Apr 9;285(15):11281-9. doi: 10.1074/jbc.M109.084079. Epub 2010 Feb 5.
5
Molecular mechanism of bundle formation by the bacterial actin ParM.
Biochem Biophys Res Commun. 2010 Jan 22;391(4):1598-603. doi: 10.1016/j.bbrc.2009.12.078. Epub 2009 Dec 22.
6
FtsZ condensates: an in vitro electron microscopy study.
Biopolymers. 2009 May;91(5):340-50. doi: 10.1002/bip.21136.
7
Electron cryomicroscopy of E. coli reveals filament bundles involved in plasmid DNA segregation.
Science. 2009 Jan 23;323(5913):509-12. doi: 10.1126/science.1164346. Epub 2008 Dec 18.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验