Popp David, Robinson Robert C
Institute of Molecular and Cell Biology; Bioplolis Drive; Proteos, Singapore Singapore.
Commun Integr Biol. 2010 Sep;3(5):451-3. doi: 10.4161/cib.3.5.12340.
Bacterial cytoskeletal filamentous proteins, like their eukaryotic counterparts, are key regulators and central organizers of many cellular processes including morphogenesis, cell division, DNA segregation and movement. Such filaments often organize themselves into complex structures within the prokaryotic cell, driven by molecular crowding and cation association, to form bundles (ParM), rings, toroids and helical spirals (FtsZ) or interwoven sheets (MreB). The formation of complex structures is essential for bacterial cytoskeleton function. Here, we highlight the suprastructures of the prokaryotic cytoskeleton that have been observed by high resolution in vitro electron microscopy and set them in perspective with in vivo observations. We discuss the underlying physical principles that lead to complex structure formation.
细菌细胞骨架丝状蛋白与其真核生物对应物一样,是许多细胞过程的关键调节因子和核心组织者,这些过程包括形态发生、细胞分裂、DNA分离和移动。在分子拥挤和阳离子结合的驱动下,此类细丝通常在原核细胞内自行组织成复杂结构,形成束状(ParM)、环状、环形和螺旋状螺旋(FtsZ)或交织片层(MreB)。复杂结构的形成对于细菌细胞骨架功能至关重要。在这里,我们重点介绍了通过高分辨率体外电子显微镜观察到的原核细胞骨架超结构,并结合体内观察结果对其进行了透视。我们讨论了导致复杂结构形成的潜在物理原理。