Suppr超能文献

有许多方法可以构建肌动蛋白丝。

Many ways to build an actin filament.

机构信息

Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673 Singapore.

出版信息

Mol Microbiol. 2011 Apr;80(2):300-8. doi: 10.1111/j.1365-2958.2011.07599.x. Epub 2011 Mar 14.

Abstract

Cells rely on extensive networks of protein fibres to help maintain their proper form and function. For species ranging from bacteria to humans, this 'cytoskeleton' is integrally involved in diverse processes including movement, DNA segregation, cell division and transport of molecular cargoes. The most abundant cytoskeletal filament-forming protein, F-actin, is remarkably well conserved across eukaryotic species. From yeast to human - an evolutionary distance of over one billion years - only about 10% of residues in actin have changed and the filament structure has been highly conserved. Surprisingly, recent structural data show this to be not the case for filamentous bacterial actins, which exhibit highly divergent helical symmetries in conjunction with structural plasticity or polymorphism, and dynamic properties that may make them uniquely suited for the specific cellular processes in which they participate. Bacterial actin filaments often organize themselves into complex structures within the prokaryotic cell, driven by molecular crowding and cation association, to form bundles (ParM) or interwoven sheets (MreB). The formation of supramolecular structures is essential for bacterial cytoskeleton function. We discuss the underlying physical principles that lead to complex structure formation and the implications these have on the physiological functions of cytoskeletal proteins.

摘要

细胞依赖于广泛的蛋白质纤维网络来帮助维持其适当的形态和功能。对于从细菌到人类的各种物种,这种“细胞骨架”都与包括运动、DNA 分离、细胞分裂和分子货物运输在内的多种过程密切相关。最丰富的细胞骨架丝状形成蛋白 F-肌动蛋白在真核生物中得到了很好的保守。从酵母到人——超过 10 亿年的进化距离——肌动蛋白中只有大约 10%的残基发生了变化,而且丝状结构高度保守。令人惊讶的是,最近的结构数据表明,丝状细菌肌动蛋白并非如此,它们与结构可塑性或多态性结合,具有高度不同的螺旋对称性,并且具有动态特性,这可能使它们特别适合于它们参与的特定细胞过程。细菌肌动蛋白丝经常在原核细胞内通过分子拥挤和阳离子结合自组装成复杂的结构,形成束(ParM)或交织的片层(MreB)。超分子结构的形成对于细菌细胞骨架功能至关重要。我们讨论了导致复杂结构形成的潜在物理原理,以及这些原理对细胞骨架蛋白生理功能的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验