Suppr超能文献

偏振激发的全内反射荧光显微镜(TIRFM)揭示了颗粒融合前后质膜拓扑结构的变化。

Polarized TIRFM reveals changes in plasma membrane topology before and during granule fusion.

机构信息

Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., 2315 MSRB III, Ann Arbor, MI 48109, USA.

出版信息

Cell Mol Neurobiol. 2010 Nov;30(8):1343-9. doi: 10.1007/s10571-010-9590-0.

Abstract

We have recently developed a combination of polarization and total internal reflection fluorescence microscopy (pTIRFM) to monitor changes in plasma membrane topology occurring after fusion of chromaffin granules. In this report, pTIRFM is further exploited to reveal two major findings in regards to the secretory pathway in bovine chromaffin cells. First, we show that changes in membrane topology are sometimes detected even prior to fusion. This occurs with high probability in a small subset of granules that appear in the evanescent field during the experiment. On these occasions, the plasma membrane invaginates with the movement just preceding the appearance of a granule in the evanescent field. Such events may represent a direct interaction of the granule with the plasma membrane. Second, we show that the topological fate of the post-fusion, granule/plasma membrane intermediate is regulated by divalent cation. When Sr2+ is used instead of Ca2+ to trigger exocytosis, membrane topology in the exocytotic region is stabilized with significant curvature and indentation.

摘要

我们最近开发了一种结合偏振和全内反射荧光显微镜(pTIRFM)的方法来监测嗜铬细胞颗粒融合后质膜拓扑结构的变化。在本报告中,pTIRFM 进一步揭示了关于牛嗜铬细胞分泌途径的两个主要发现。首先,我们表明,即使在融合之前,有时也会检测到膜拓扑结构的变化。在实验过程中,在消逝场中出现的一小部分颗粒中,这种情况很可能会发生。在这种情况下,质膜内陷,就在颗粒出现在消逝场之前。这些事件可能代表颗粒与质膜的直接相互作用。其次,我们表明,融合后颗粒/质膜中间产物的拓扑命运受二价阳离子调节。当用 Sr2+代替 Ca2+触发胞吐作用时,胞吐作用区域的膜拓扑结构稳定,具有显著的曲率和凹陷。

相似文献

1
Polarized TIRFM reveals changes in plasma membrane topology before and during granule fusion.
Cell Mol Neurobiol. 2010 Nov;30(8):1343-9. doi: 10.1007/s10571-010-9590-0.
2
Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM.
J Cell Biol. 2010 Feb 8;188(3):415-28. doi: 10.1083/jcb.200908010.
3
Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy.
Mol Biol Cell. 2004 Oct;15(10):4658-68. doi: 10.1091/mbc.e04-02-0149. Epub 2004 Jul 28.
4
Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies.
Acta Physiol (Oxf). 2008 Feb;192(2):303-7. doi: 10.1111/j.1748-1716.2007.01818.x. Epub 2007 Nov 16.
7
A new role for the dynamin GTPase in the regulation of fusion pore expansion.
Mol Biol Cell. 2011 Jun 1;22(11):1907-18. doi: 10.1091/mbc.E11-02-0101. Epub 2011 Apr 1.
8
Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.
Mol Biol Cell. 2006 May;17(5):2424-38. doi: 10.1091/mbc.e05-10-0938. Epub 2006 Mar 1.
9
Imaging plasma membrane deformations with pTIRFM.
J Vis Exp. 2014 Apr 2(86):51334. doi: 10.3791/51334.
10
Analysis of the late steps of exocytosis: biochemical and total internal reflection fluorescence microscopy (TIRFM) studies.
Cell Mol Neurobiol. 2006 Jul-Aug;26(4-6):439-47. doi: 10.1007/s10571-006-9049-5. Epub 2006 Apr 20.

引用本文的文献

1
Illuminating cellular architecture and dynamics with fluorescence polarization microscopy.
J Cell Sci. 2024 Oct 15;137(20). doi: 10.1242/jcs.261947. Epub 2024 Oct 14.
2
OOPS: Object-Oriented Polarization Software for analysis of fluorescence polarization microscopy images.
PLoS Comput Biol. 2024 Aug 12;20(8):e1011723. doi: 10.1371/journal.pcbi.1011723. eCollection 2024 Aug.
3
Imaging nanoscale axial dynamics at the basal plasma membrane.
Int J Biochem Cell Biol. 2023 Mar;156:106349. doi: 10.1016/j.biocel.2022.106349. Epub 2022 Dec 22.
5
Chromogranin A, the major lumenal protein in chromaffin granules, controls fusion pore expansion.
J Gen Physiol. 2019 Feb 4;151(2):118-130. doi: 10.1085/jgp.201812182. Epub 2018 Nov 30.
6
Distinct patterns of exocytosis elicited by Ca, Sr and Ba in bovine chromaffin cells.
Pflugers Arch. 2018 Oct;470(10):1459-1471. doi: 10.1007/s00424-018-2166-4. Epub 2018 Jun 21.
7
The fusion pore, 60 years after the first cartoon.
FEBS Lett. 2018 Nov;592(21):3542-3562. doi: 10.1002/1873-3468.13160. Epub 2018 Jul 2.
8
Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics.
Nat Commun. 2018 Jan 29;9(1):419. doi: 10.1038/s41467-018-02818-8.
9
Nanoscale Membrane Budding Induced by CTxB and Detected via Polarized Localization Microscopy.
Biophys J. 2017 Oct 17;113(8):1795-1806. doi: 10.1016/j.bpj.2017.08.031.
10
The Detection of Nanoscale Membrane Bending with Polarized Localization Microscopy.
Biophys J. 2017 Oct 17;113(8):1782-1794. doi: 10.1016/j.bpj.2017.07.034.

本文引用的文献

1
Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM.
J Cell Biol. 2010 Feb 8;188(3):415-28. doi: 10.1083/jcb.200908010.
3
A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse.
Pflugers Arch. 2006 Dec;453(3):261-8. doi: 10.1007/s00424-006-0143-9. Epub 2006 Oct 3.
4
Dynasore, a cell-permeable inhibitor of dynamin.
Dev Cell. 2006 Jun;10(6):839-50. doi: 10.1016/j.devcel.2006.04.002.
5
Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy.
Mol Biol Cell. 2004 Oct;15(10):4658-68. doi: 10.1091/mbc.e04-02-0149. Epub 2004 Jul 28.
8
Cell membrane orientation visualized by polarized total internal reflection fluorescence.
Biophys J. 1999 Oct;77(4):2266-83. doi: 10.1016/S0006-3495(99)77066-9.
10
Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells.
Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12765-9. doi: 10.1073/pnas.91.26.12765.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验