Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
J Cell Sci. 2024 Oct 15;137(20). doi: 10.1242/jcs.261947. Epub 2024 Oct 14.
Ever since Robert Hooke's 17th century discovery of the cell using a humble compound microscope, light-matter interactions have continuously redefined our understanding of cell biology. Fluorescence microscopy has been particularly transformative and remains an indispensable tool for many cell biologists. The subcellular localization of biomolecules is now routinely visualized simply by manipulating the wavelength of light. Fluorescence polarization microscopy (FPM) extends these capabilities by exploiting another optical property - polarization - allowing researchers to measure not only the location of molecules, but also their organization or alignment within larger cellular structures. With only minor modifications to an existing fluorescence microscope, FPM can reveal the nanoscale architecture, orientational dynamics, conformational changes and interactions of fluorescently labeled molecules in their native cellular environments. Importantly, FPM excels at imaging systems that are challenging to study through traditional structural approaches, such as membranes, membrane proteins, cytoskeletal networks and large macromolecular complexes. In this Review, we discuss key discoveries enabled by FPM, compare and contrast the most common optical setups for FPM, and provide a theoretical and practical framework for researchers to apply this technique to their own research questions.
自罗伯特·胡克(Robert Hooke)在 17 世纪使用简陋的复式显微镜发现细胞以来,光与物质的相互作用不断地重新定义了我们对细胞生物学的理解。荧光显微镜具有特别的变革性,并且仍然是许多细胞生物学家不可或缺的工具。通过操纵光的波长,生物分子的亚细胞定位现在可以简单地可视化。荧光偏振显微镜(FPM)通过利用另一个光学特性 - 偏振 - 扩展了这些功能,使研究人员不仅能够测量分子的位置,还能够测量它们在更大细胞结构中的组织或排列。通过对现有荧光显微镜进行微小修改,FPM 可以揭示荧光标记分子在其天然细胞环境中的纳米级结构、取向动力学、构象变化和相互作用。重要的是,FPM 在通过传统结构方法难以研究的成像系统方面表现出色,例如膜、膜蛋白、细胞骨架网络和大型大分子复合物。在这篇综述中,我们讨论了 FPM 带来的关键发现,比较和对比了 FPM 最常见的光学设置,并为研究人员提供了一个理论和实践框架,将该技术应用于他们自己的研究问题。