Suppr超能文献

一种用于风险评估中暴露模式的动态剂量反应模型:吸入性炭疽的案例研究。

A dynamic dose-response model to account for exposure patterns in risk assessment: a case study in inhalation anthrax.

机构信息

Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J R Soc Interface. 2011 Apr 6;8(57):506-17. doi: 10.1098/rsif.2010.0491. Epub 2010 Nov 10.

Abstract

The most commonly used dose-response models implicitly assume that accumulation of dose is a time-independent process where each pathogen has a fixed risk of initiating infection. Immune particle neutralization of pathogens, however, may create strong time dependence; i.e. temporally clustered pathogens have a better chance of overwhelming the immune particles than pathogen exposures that occur at lower levels for longer periods of time. In environmental transmission systems, we expect different routes of transmission to elicit different dose-timing patterns and thus potentially different realizations of risk. We present a dose-response model that captures time dependence in a manner that incorporates the dynamics of initial immune response. We then demonstrate the parameter estimation of our model in a dose-response survival analysis using empirical time-series data of inhalational anthrax in monkeys in which we find slight dose-timing effects. Future dose-response experiments should include varying the time pattern of exposure in addition to varying the total doses delivered. Ultimately, the dynamic dose-response paradigm presented here will improve modelling of environmental transmission systems where different systems have different time patterns of exposure.

摘要

最常用的剂量反应模型隐含地假设剂量的积累是一个与时间无关的过程,其中每个病原体都有固定的感染风险。然而,免疫粒子对病原体的中和作用可能会产生强烈的时间依赖性;也就是说,时间上聚集的病原体比长时间低水平暴露的病原体更有可能克服免疫粒子。在环境传播系统中,我们预计不同的传播途径会引起不同的剂量-时间模式,从而可能会产生不同的风险实现。我们提出了一种剂量反应模型,以一种包含初始免疫反应动态的方式来捕捉时间依赖性。然后,我们使用猴子吸入性炭疽的经验时间序列数据在剂量反应生存分析中演示了我们模型的参数估计,我们发现了轻微的剂量-时间效应。未来的剂量反应实验除了改变总剂量外,还应包括改变暴露的时间模式。最终,这里提出的动态剂量反应范式将改进不同系统具有不同暴露时间模式的环境传播系统的建模。

相似文献

1
A dynamic dose-response model to account for exposure patterns in risk assessment: a case study in inhalation anthrax.
J R Soc Interface. 2011 Apr 6;8(57):506-17. doi: 10.1098/rsif.2010.0491. Epub 2010 Nov 10.
2
Key aspects of the molecular and cellular basis of inhalational anthrax.
Microbes Infect. 2011 Dec;13(14-15):1146-55. doi: 10.1016/j.micinf.2011.07.005. Epub 2011 Jul 21.
3
Modeling the macrophage-anthrax spore interaction: Implications for early host-pathogen interactions.
Math Biosci. 2018 Nov;305:18-28. doi: 10.1016/j.mbs.2018.08.010. Epub 2018 Aug 27.
4
The US capitol bioterrorism anthrax exposures: clinical epidemiological and immunological characteristics.
J Infect Dis. 2007 Jan 15;195(2):174-84. doi: 10.1086/510312. Epub 2006 Dec 6.
5
Dose-Response Modeling for Inhalational Anthrax in Rabbits Following Single or Multiple Exposures.
Risk Anal. 2016 Nov;36(11):2031-2038. doi: 10.1111/risa.12564. Epub 2016 Feb 17.
6
Inhalation anthrax: dose response and risk analysis.
Biosecur Bioterror. 2008 Jun;6(2):147-60. doi: 10.1089/bsp.2007.0066.
7
Addressing residual risk issues at anthrax cleanups: how clean is safe?
J Toxicol Environ Health A. 2005;68(11-12):1017-32. doi: 10.1080/15287390590912621.
9
On the risk of mortality to primates exposed to anthrax spores.
Risk Anal. 2002 Apr;22(2):189-93. doi: 10.1111/0272-4332.00028.
10
Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis.
J Immunol. 2005 May 1;174(9):5545-52. doi: 10.4049/jimmunol.174.9.5545.

引用本文的文献

1
A quantitative microbial risk assessment for touchscreen user interfaces using an asymmetric transfer gradient transmission mode.
PLoS One. 2022 Mar 25;17(3):e0265565. doi: 10.1371/journal.pone.0265565. eCollection 2022.
2
Optimization of energy efficiency and COVID-19 pandemic control in different indoor environments.
Energy Build. 2022 Apr 15;261:111954. doi: 10.1016/j.enbuild.2022.111954. Epub 2022 Feb 16.
4
A dose response model for quantifying the infection risk of antibiotic-resistant bacteria.
Sci Rep. 2019 Nov 19;9(1):17093. doi: 10.1038/s41598-019-52947-3.
5
Dose-response relationships for environmentally mediated infectious disease transmission models.
PLoS Comput Biol. 2017 Apr 7;13(4):e1005481. doi: 10.1371/journal.pcbi.1005481. eCollection 2017 Apr.
6
Modeling Rabbit Responses to Single and Multiple Aerosol Exposures of Bacillus anthracis Spores.
Risk Anal. 2017 May;37(5):943-957. doi: 10.1111/risa.12688. Epub 2017 Jan 25.
7
Unveiling time in dose-response models to infer host susceptibility to pathogens.
PLoS Comput Biol. 2014 Aug 14;10(8):e1003773. doi: 10.1371/journal.pcbi.1003773. eCollection 2014 Aug.
8
Herpes simplex virus-2 transmission probability estimates based on quantity of viral shedding.
J R Soc Interface. 2014 Mar 26;11(95):20140160. doi: 10.1098/rsif.2014.0160. Print 2014 Jun 6.
9
Deterministic models of inhalational anthrax in New Zealand white rabbits.
Biosecur Bioterror. 2014 Jan-Feb;12(1):29-41. doi: 10.1089/bsp.2013.0067. Epub 2014 Feb 14.
10
Quantitative models of the dose-response and time course of inhalational anthrax in humans.
PLoS Pathog. 2013 Aug;9(8):e1003555. doi: 10.1371/journal.ppat.1003555. Epub 2013 Aug 15.

本文引用的文献

1
Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
J R Soc Interface. 2010 Feb 6;7(43):271-83. doi: 10.1098/rsif.2009.0151. Epub 2009 Jun 17.
2
The effect of ongoing exposure dynamics in dose response relationships.
PLoS Comput Biol. 2009 Jun;5(6):e1000399. doi: 10.1371/journal.pcbi.1000399. Epub 2009 Jun 5.
3
Inactivation of influenza A viruses in the environment and modes of transmission: a critical review.
J Infect. 2008 Nov;57(5):361-73. doi: 10.1016/j.jinf.2008.08.013. Epub 2008 Oct 9.
4
The guinea pig as a transmission model for human influenza viruses.
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9988-92. doi: 10.1073/pnas.0604157103. Epub 2006 Jun 19.
5
Sverdlovsk revisited: modeling human inhalation anthrax.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7589-94. doi: 10.1073/pnas.0509551103. Epub 2006 May 5.
6
Modelling the incubation period of anthrax.
Stat Med. 2005 Feb 28;24(4):531-42. doi: 10.1002/sim.2033.
7
Low-dose Salmonella infection evades activation of flagellin-specific CD4 T cells.
J Immunol. 2004 Sep 15;173(6):4091-9. doi: 10.4049/jimmunol.173.6.4091.
8
Time-lapse confocal imaging of development of Bacillus anthracis in macrophages.
J Infect Dis. 2004 Apr 1;189(7):1313-6. doi: 10.1086/382656. Epub 2004 Mar 19.
10
Pathology of inhalation anthrax in cynomolgus monkeys (Macaca fascicularis).
Lab Invest. 2003 Aug;83(8):1201-9. doi: 10.1097/01.lab.0000080599.43791.01.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验