Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA 02215, USA.
J Neurophysiol. 2011 Jan;105(1):200-8. doi: 10.1152/jn.00725.2009. Epub 2010 Nov 10.
Segmentation of the visual scene into relevant object components is a fundamental process for successfully interacting with our surroundings. Many visual cues, including motion and binocular disparity, support segmentation, yet the mechanisms using these cues are unclear. We used a psychophysical motion discrimination task in which noise dots were displaced in depth to investigate the role of segmentation through disparity cues in visual motion stimuli (experiment 1). We found a subtle, but significant, bias indicating that near disparity noise disrupted the segmentation of motion more than equidistant far disparity noise. A control experiment showed that the near-far difference could not be attributed to attention (experiment 2). To account for the near-far bias, we constructed a biologically constrained model using recordings from neurons in the middle temporal area (MT) to simulate human observers' performance on experiment 1. Performance of the model of MT neurons showed a near-disparity skew similar to that shown by human observers. To isolate the cause of the skew, we simulated performance of a model containing units derived from properties of MT neurons, using phase-modulated Gabor disparity tuning. Using a skewed-normal population distribution of preferred disparities, the model reproduced the elevated motion discrimination thresholds for near-disparity noise, whereas a skewed-normal population of phases (creating individually asymmetric units) did not lead to any performance skew. Results from the model suggest that the properties of neurons in area MT are computationally sufficient to perform disparity segmentation during motion processing and produce similar disparity biases as those produced by human observers.
将视觉场景分割成相关的目标成分是成功与周围环境交互的基本过程。许多视觉线索,包括运动和双目视差,都支持分割,但使用这些线索的机制尚不清楚。我们使用了一种心理物理学运动辨别任务,其中噪声点在深度上移动,以研究通过视差线索在视觉运动刺激中进行分割的作用(实验 1)。我们发现了一个微妙但显著的偏差,表明近距视差噪声比等距远距视差噪声更能干扰运动的分割。一项对照实验表明,近-远差异不能归因于注意力(实验 2)。为了解释近-远偏差,我们使用从中颞区(MT)神经元记录的数据构建了一个受生物约束的模型,以模拟人类观察者在实验 1 中的表现。MT 神经元模型的性能表现出类似于人类观察者的近视差倾斜。为了隔离倾斜的原因,我们使用相位调制的 Gabor 视差调谐模拟了一个包含源自 MT 神经元特性的单元的模型的性能。使用具有倾斜正态分布的首选视差的群体分布,该模型再现了近视差噪声的运动辨别阈值升高,而相位的倾斜正态分布(创建单独不对称的单元)并没有导致任何性能倾斜。模型的结果表明,MT 区神经元的特性在计算上足以在运动处理过程中执行视差分割,并产生与人类观察者产生的相似的视差偏差。