Suppr超能文献

一种结合 V3 环序列解读和临床参数预测治疗经验丰富的 HIV-1 患者病毒嗜性的高度敏感和特异的模型。

A highly sensitive and specific model for predicting HIV-1 tropism in treatment-experienced patients combining interpretation of V3 loop sequences and clinical parameters.

机构信息

Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain.

出版信息

J Acquir Immune Defic Syndr. 2011 Jan 1;56(1):51-8. doi: 10.1097/QAI.0b013e3181fc012b.

Abstract

BACKGROUND

Phenotypic assays are considered the gold standard for HIV-1 tropism assessment. However, they are expensive and not widely available. Genotypic assays may provide an easier alternative, but their sensitivity remains low. We hypothesize that combining clinical data with V3 sequences may improve the diagnostic accuracy of genotypic tools.

METHODS

We analyzed clinical and biological data from 159 HIV-1-infected adults, 88 (56%) of whom were treatment experienced. Coreceptor phenotype was performed with Trofile and ES Trofile assay. V3 loop sequences were interpreted according to genotypic algorithms available at website. Multivariate logistic regression analyses were used to identify variables predicting HIV-1 tropism. Cut-off values for the prediction of CXCR4-using virus were defined.

RESULTS

A total of 170 samples with phenotypic and genotypic determination of HIV-1 tropism were included. When only treatment-experienced patients were selected, a predictive model of HIV-1 tropism had an area under the receiver operating characteristic curve of 0.966 (95% confidence interval: 0.930 to 1.000, P < 0.001). The equation of the model included 2 bioinformatic tools (Geno2pheno-clinical model and net charge rule), the false positive rate score of Geno2pheno, and the following clinical data: exposure to more than 3 antiretroviral classes, years since HIV infection diagnosis and log10 HIV-1 RNA. A cut-off value ≥ 5.75 showed the highest accuracy to predict CXCR4 usage (96.6% sensitivity and 92.3% specificity).

CONCLUSIONS

A genotypic-clinical model is highly accurate in predicting phenotypic tropism of HIV-1 in treatment-experienced patients. This may provide a cheap and rapid tool to select candidates for treatment with CCR5 antagonists in a routine clinical setting.

摘要

背景

表型分析被认为是 HIV-1 嗜性评估的金标准。然而,它们昂贵且不广泛可用。基因型分析可能提供一种更容易的替代方法,但它们的灵敏度仍然较低。我们假设将临床数据与 V3 序列相结合可能会提高基因型工具的诊断准确性。

方法

我们分析了 159 名 HIV-1 感染成人的临床和生物学数据,其中 88 名(56%)为治疗经验丰富的患者。使用 Trofile 和 ES Trofile 测定法进行辅助受体表型分析。根据可用的基因型算法解释 V3 环序列。使用多变量逻辑回归分析来确定预测 HIV-1 嗜性的变量。定义用于预测 CXCR4 使用病毒的截断值。

结果

共纳入了 170 例具有 HIV-1 嗜性表型和基因型测定的样本。当仅选择治疗经验丰富的患者时,HIV-1 嗜性的预测模型的受试者工作特征曲线下面积为 0.966(95%置信区间:0.930 至 1.000,P < 0.001)。该模型的方程包括 2 个生物信息学工具(Geno2pheno-clinical 模型和净电荷规则)、Geno2pheno 的假阳性率评分以及以下临床数据:暴露于超过 3 种抗逆转录病毒药物类别、从 HIV 感染诊断到现在的年数和 log10 HIV-1 RNA。截断值≥5.75 显示出预测 CXCR4 使用的最高准确性(96.6%的敏感性和 92.3%的特异性)。

结论

基因型-临床模型在预测治疗经验丰富患者的 HIV-1 表型嗜性方面具有很高的准确性。这可能为在常规临床环境中选择接受 CCR5 拮抗剂治疗的候选者提供一种廉价且快速的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验