Suppr超能文献

沙鼠脑桥外侧被盖部的原位膨胀实验弹性特征描述。

Elastic characterization of the gerbil pars flaccida from in situ inflation experiments.

机构信息

Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.

出版信息

Biomech Model Mechanobiol. 2011 Oct;10(5):727-41. doi: 10.1007/s10237-010-0269-8. Epub 2010 Nov 11.

Abstract

In hearing science, finite element modelling is used commonly to study the mechanical behaviour of the middle ear. Correct quantitative elasticity parameters are an important input in these models. However, up till now, no large deformation elastic characterization of the pars flaccida, a small part of the tympanic membrane, has been carried out. In this paper, an elastic characterization of the gerbil pars flaccida is presented. The gerbil is used frequently as animal model in middle ear mechanics research. Characterization was done via inverse analysis of in situ static pressure inflation experiments. As a first approach, the pars flaccida was modelled as a linear homogeneous isotropic elastic membrane, which resulted in an average Young's modulus of = (41.0 ± 0.4) kPa. It was found that linear elastic modelling cannot describe inflation stagnation at high pressures. Therefore, in a second approach, the Veronda-Westmann hyperelastic model was introduced. This was able to describe curve stagnation, the mean parameters that were found are = (3.1 ± 0.4) kPa and = (2.5 ± 0.2). Finally, in situ strain was considered in the finite element models which resulted in a better description of the behaviour for small pressures. Incorporating this, the optimal Veronda-Westmann parameters are <CεR1> = (2.6 ± 0.6) kPa, <CεR2> = (1.4 ± 0.2) kPa for a radial in situ strain of <εR> = (12 ± 2)%. In conclusion, this paper shows that a linear elastic material is not appropriate to describe pars flaccida's behaviour in the quasi-static pressure regime, that the currently used membrane stiffness estimates do not hold for large deformations and that incorporating an in situ strain in the models is necessary for a good description for small static pressures.

摘要

在听觉科学中,有限元建模常用于研究中耳的力学行为。在这些模型中,正确的定量弹性参数是一个重要的输入。然而,到目前为止,尚未对鼓膜的一小部分——松弛部进行大变形弹性特性的研究。本文介绍了沙鼠鼓膜松弛部的弹性特性。沙鼠常被用作中耳力学研究的动物模型。通过对原位静态压力膨胀实验的反分析进行了特性描述。作为初步方法,将松弛部建模为线性各向同性弹性膜,得到平均杨氏模量=(41.0±0.4)kPa。发现线性弹性模型无法描述高压下的膨胀停滞。因此,在第二种方法中,引入了Veronda-Westmann超弹性模型。该模型能够描述曲线停滞,发现的平均参数为=(3.1±0.4)kPa 和 =(2.5±0.2)kPa。最后,在有限元模型中考虑了原位应变,从而更好地描述了小压力下的行为。将其纳入考虑,最佳的 Veronda-Westmann 参数为<CεR1>=(2.6±0.6)kPa、<CεR2>=(1.4±0.2)kPa,对应的径向原位应变 <εR>=(12±2)%。总之,本文表明,线性弹性材料不适用于描述鼓膜松弛部在准静态压力下的行为,当前使用的膜刚度估计值不适用于大变形,并且在模型中纳入原位应变对于小静态压力的良好描述是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验