Suppr超能文献

甘氨酸突变在细菌胶原蛋白中的位置会影响三螺旋折叠和构象的破坏程度。

Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation.

机构信息

Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.

出版信息

J Biol Chem. 2011 Jan 21;286(3):2041-6. doi: 10.1074/jbc.M110.153965. Epub 2010 Nov 11.

Abstract

The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.

摘要

遗传性骨病成骨不全症通常是由Ⅰ型胶原的错义突变引起的,这些突变会将一个甘氨酸残基改变为较大的残基,并破坏典型的(甘氨酸-Xaa-丙氨酸)(n)序列模式。在重组细菌胶原系统中的定点突变用于探索甘氨酸突变位置和在同质胶原分子群体中取代甘氨酸的残基的身份对胶原分子稳定性的影响。具有甘氨酸到精氨酸或甘氨酸到丝氨酸取代的同三聚体细菌胶原蛋白形成稳定的三螺旋分子,稳定性降低 2°C。所有甘氨酸取代都会导致三螺旋折叠显著延迟,但当突变位于三螺旋结构域的 N 端附近时,观察到更明显的延迟。这种高度破坏性的突变接近球形的 N 端三聚化结构域,折叠从这里开始,很可能干扰三螺旋核的形成。甘氨酸到精氨酸的突变接近三螺旋的 N 端时,胰蛋白酶敏感性的位置效应,而不是在分子中心附近的相同替换,也提示了突变的位置效应。突变位置对三螺旋折叠和构象的显著影响可能与Ⅰ型和Ⅲ型胶原 C 端附近突变的严重后果有关,在这些位置发生三聚化和三螺旋折叠的起始。

相似文献

2
Folding delay and structural perturbations caused by type IV collagen natural interruptions and nearby Gly missense mutations.
J Biol Chem. 2012 Feb 3;287(6):4368-75. doi: 10.1074/jbc.M111.269084. Epub 2011 Dec 16.
3
Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding.
J Struct Biol. 2018 Sep;203(3):255-262. doi: 10.1016/j.jsb.2018.05.003. Epub 2018 May 11.
8
[Effects of Gly mutations N-terminal to the integrin-binding sequence on the structure and function of recombinant collagen].
Sheng Wu Gong Cheng Xue Bao. 2025 Apr 25;41(4):1573-1587. doi: 10.13345/j.cjb.240722.

引用本文的文献

1
Targeting senescence and GATA4 in age-related cardiovascular disease: a comprehensive approach.
Biogerontology. 2025 Jan 20;26(1):45. doi: 10.1007/s10522-025-10189-z.
2
Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders.
Matrix Biol Plus. 2023 Dec 14;21:100139. doi: 10.1016/j.mbplus.2023.100139. eCollection 2024 Feb.
3
Purification of recombinant bacterial collagens containing structural perturbations.
PLoS One. 2023 May 17;18(5):e0285864. doi: 10.1371/journal.pone.0285864. eCollection 2023.
4
Discovering design principles of collagen molecular stability using a genetic algorithm, deep learning, and experimental validation.
Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2209524119. doi: 10.1073/pnas.2209524119. Epub 2022 Sep 26.
5
ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences.
J Mech Behav Biomed Mater. 2022 Jan;125:104921. doi: 10.1016/j.jmbbm.2021.104921. Epub 2021 Oct 31.
6
Collagen Mimetic Peptides.
Bioengineering (Basel). 2021 Jan 5;8(1):5. doi: 10.3390/bioengineering8010005.
8
Bacterial collagen-like proteins that form triple-helical structures.
J Struct Biol. 2014 Jun;186(3):451-61. doi: 10.1016/j.jsb.2014.01.003. Epub 2014 Jan 14.
9
Direct detection of collagenous proteins by fluorescently labeled collagen mimetic peptides.
Bioconjug Chem. 2013 Jan 16;24(1):9-16. doi: 10.1021/bc3005842. Epub 2013 Jan 3.
10
Defining requirements for collagenase cleavage in collagen type III using a bacterial collagen system.
J Biol Chem. 2012 Jun 29;287(27):22988-97. doi: 10.1074/jbc.M112.348979. Epub 2012 May 9.

本文引用的文献

4
Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I.
J Am Chem Soc. 2008 Jun 11;130(23):7509-15. doi: 10.1021/ja801670v. Epub 2008 May 16.
5
Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta.
J Biol Chem. 2008 Feb 22;283(8):4787-98. doi: 10.1074/jbc.M705773200. Epub 2007 Dec 11.
6
Mechanism of stabilization of a bacterial collagen triple helix in the absence of hydroxyproline.
J Biol Chem. 2007 Oct 12;282(41):29757-65. doi: 10.1074/jbc.M703991200. Epub 2007 Aug 10.
7
Selective retention and degradation of molecules with a single mutant alpha1(I) chain in the Brtl IV mouse model of OI.
Matrix Biol. 2007 Oct;26(8):604-14. doi: 10.1016/j.matbio.2007.06.005. Epub 2007 Jun 27.
9
Molecular structure of the collagen triple helix.
Adv Protein Chem. 2005;70:301-39. doi: 10.1016/S0065-3233(05)70009-7.
10
Etiology of osteogenesis imperfecta: an overview of biochemical and molecular genetic analyses.
Connect Tissue Res. 1995;31(4):257-9. doi: 10.3109/03008209509010818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验