Suppr超能文献

一种用于计算树空间测地距离的快速算法。

A fast algorithm for computing geodesic distances in tree space.

机构信息

Department of Mathematics, University of California, Berkeley, MC 3840, Berkeley, CA 94720-0432, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):2-13. doi: 10.1109/TCBB.2010.3.

Abstract

Comparing and computing distances between phylogenetic trees are important biological problems, especially for models where edge lengths play an important role. The geodesic distance measure between two phylogenetic trees with edge lengths is the length of the shortest path between them in the continuous tree space introduced by Billera, Holmes, and Vogtmann. This tree space provides a powerful tool for studying and comparing phylogenetic trees, both in exhibiting a natural distance measure and in providing a euclidean-like structure for solving optimization problems on trees. An important open problem is to find a polynomial time algorithm for finding geodesics in tree space. This paper gives such an algorithm, which starts with a simple initial path and moves through a series of successively shorter paths until the geodesic is attained.

摘要

比较和计算系统发育树之间的距离是重要的生物学问题,特别是对于边长度起着重要作用的模型。带边长度的两个系统发育树之间的测地距离度量是它们在由 Billera、Holmes 和 Vogtmann 引入的连续树空间中的最短路径的长度。这个树空间为研究和比较系统发育树提供了一个强大的工具,它不仅展示了自然的距离度量,而且为解决树上的优化问题提供了类似欧几里得的结构。一个重要的未解决问题是找到在树空间中找到测地线的多项式时间算法。本文给出了这样的算法,它从一个简单的初始路径开始,并通过一系列越来越短的路径移动,直到达到测地线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验