Wysoczanski Artur, Angelini Elsa D, Smith Benjamin M, Hoffman Eric A, Hiura Grant T, Sun Yifei, Barr R Graham, Laine Andrew F
Department of Biomedical Engineering, Columbia University, New York, NY, USA.
ITMAT Data Science Group, NIHR Imperial BRC, Imperial College, London, UK.
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:1568-1572. doi: 10.1109/isbi48211.2021.9434172. Epub 2021 May 25.
The morphology of the proximal human airway tree is highly variable in the general population, and known variants in airway branching patterns are associated with increased risk of COPD and with polymorphisms in growth factors involved in pulmonary development. Variation in the geometry and topology of the airway tree remains incompletely characterized, and their clinical implications are not yet understood. In this work, we present an approach to unsupervised clustering of airway tree structures in Billera-Holmes-Vogtmann tree-space. We validate our pipeline on synthetic airway tree data, and apply our algorithm to identify reproducible and morphologically distinct airway tree subtypes in the MESA Lung CT cohort.
在普通人群中,人类近端气道树的形态具有高度变异性,已知的气道分支模式变异与慢性阻塞性肺疾病(COPD)风险增加以及参与肺发育的生长因子多态性有关。气道树的几何形状和拓扑结构的变异仍未得到充分表征,其临床意义也尚未明确。在这项研究中,我们提出了一种在Billera-Holmes-Vogtmann树空间中对气道树结构进行无监督聚类的方法。我们在合成气道树数据上验证了我们的流程,并应用我们的算法在多民族动脉粥样硬化研究(MESA)肺部CT队列中识别可重复且形态上不同的气道树亚型。