CNRS/Université de Rennes 1, IPR UMR UR1-CNRS 6251, 263 av. Général Leclerc, 35042, Rennes cedex, France.
Lab Chip. 2011 Feb 7;11(3):429-34. doi: 10.1039/c0lc00046a. Epub 2010 Nov 11.
The production of micron-size droplets using microfluidic tools offers new opportunities to carry out biological assays in a controlled environment. We apply these strategies by using a flow-focusing microfluidic device to encapsulate Xenopus egg extracts, a biological system recapitulating key events of eukaryotic cell functions in vitro. We present a method to generate monodisperse egg extract-in-oil droplets and use high-speed imaging to characterize the droplet pinch-off dynamics leading to the production of trains of droplets. We use fluorescence microscopy to show that our method does not affect the biological activity of the encapsulated egg extract by observing the self-organization of microtubules and actin filaments, two main biopolymers of the cell cytoskeleton, encapsulated in the produced droplets. We anticipate that this assay might be useful for quantitative studies of biological systems in a confined environment as well as high throughput screenings for drug discovery.
使用微流控工具生产微尺寸液滴为在受控环境中进行生物分析提供了新的机会。我们通过使用流聚焦微流控装置来包封非洲爪蟾卵提取物,该生物系统在体外再现了真核细胞功能的关键事件。我们提出了一种产生单分散卵提取物-油液滴的方法,并使用高速成像来描述导致液滴串产生的液滴的挤压动力学。我们使用荧光显微镜观察到微管和肌动蛋白丝(细胞细胞骨架的两种主要生物聚合物)的自组织,表明我们的方法不会影响包封的卵提取物的生物活性。封装在产生的液滴中。我们预计,这种测定方法对于在受限环境中对生物系统进行定量研究以及用于药物发现的高通量筛选可能是有用的。