Forschungszentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Leipzig, Germany.
Eur J Nucl Med Mol Imaging. 2011 Mar;38(3):540-51. doi: 10.1007/s00259-010-1658-z. Epub 2010 Nov 12.
Neuroimaging of σ(1) receptors in the human brain has been proposed for the investigation of the pathophysiology of neurodegenerative and psychiatric diseases. However, there is a lack of suitable (18)F-labelled PET radioligands for that purpose.
The selective σ(1) receptor ligand [(18)F]fluspidine (1'-benzyl-3-(2-[(18)F]fluoroethyl)-3H-spiro[[2]benzofuran-1,4'-piperidine]) was synthesized by nucleophilic (18)F(-) substitution of the tosyl precursor. In vitro receptor binding affinity and selectivity were assessed by radioligand competition in tissue homogenate and autoradiographic approaches. In female CD-1 mice, in vivo properties of [(18)F]fluspidine were evaluated by ex vivo brain section imaging and organ distribution of intravenously administered radiotracer. Target specificity was validated by organ distribution of [(18)F]fluspidine after treatment with 1 mg/kg i.p. of the σ receptor antagonist haloperidol or the emopamil binding protein (EBP) inhibitor tamoxifen. In vitro metabolic stability and in vivo metabolism were investigated by LC-MS(n) and radio-HPLC analysis.
[(18)F]Fluspidine was obtained with a radiochemical yield of 35-45%, a radiochemical purity of ≥ 99.6% and a specific activity of 150-350 GBq/μmol (n = 6) within a total synthesis time of 90-120 min. In vitro, fluspidine bound specifically and with high affinity to σ(1) receptors (K (i) = 0.59 nM). In mice, [(18)F]fluspidine rapidly accumulated in brain with uptake values of 3.9 and 4.7%ID/g and brain to blood ratios of 7 and 13 at 5 and 30 min after intravenous application of the radiotracer, respectively. By ex vivo autoradiography of brain slices, resemblance between binding site occupancy of [(18)F]fluspidine and the expression of σ(1) receptors was shown. The radiotracer uptake in the brain as well as in peripheral σ(1) receptor expressing organs was significantly inhibited by haloperidol but not by tamoxifen. Incubation with rat liver microsomes led to a fast biotransformation of fluspidine. After an incubation period of 30 min only 13% of the parent compound was left. Seven metabolites were identified by HPLC-UV and LC-MS(n) techniques. However, [(18)F]fluspidine showed a higher metabolic stability in vivo. In plasma samples ∼ 94% of parent compound remained at 30 min and ∼ 67% at 60 min post-injection. Only one major radiometabolite was detected. None of the radiometabolites crossed the blood-brain barrier.
[(18)F]Fluspidine demonstrated favourable target affinity and specificity as well as metabolic stability both in vitro and in animal experiments. The in vivo properties of [(18)F]fluspidine offer a high potential of this radiotracer for neuroimaging and quantitation of σ(1) receptors in vivo.
在人类大脑中对 σ(1) 受体进行神经影像学研究,以探讨神经退行性和精神疾病的病理生理学。然而,目前缺乏用于该目的的合适的 (18)F 标记的 PET 放射性配体。
通过亲核 (18)F(-) 取代 tosyl 前体,合成了选择性 σ(1) 受体配体 [(18)F]fluspidine(1'-苄基-3-(2-[(18)F]氟乙基)-3H-螺[[2]苯并呋喃-1,4'-哌啶])。通过组织匀浆和放射自显影方法评估放射性配体竞争中的体外受体结合亲和力和选择性。在雌性 CD-1 小鼠中,通过静脉注射放射性示踪剂的离体脑切片成像和器官分布评估 [(18)F]fluspidine 的体内特性。通过给予 σ 受体拮抗剂氟哌啶醇或 emopamil 结合蛋白 (EBP) 抑制剂他莫昔芬 1mg/kg 腹腔内处理后,通过器官分布验证了 [(18)F]fluspidine 的靶向特异性。通过 LC-MS(n) 和放射性 HPLC 分析研究了体外代谢稳定性和体内代谢。
在总合成时间为 90-120 分钟内,[ (18)F]fluspidine 的放射化学产率为 35-45%,放射化学纯度≥99.6%,比活度为 150-350GBq/μmol(n=6)。体外,fluspidine 特异性和高亲和力结合 σ(1) 受体(K(i)=0.59nM)。在小鼠中,[(18)F]fluspidine 静脉注射示踪剂后 5 和 30 分钟,脑内摄取值分别为 3.9%和 4.7%ID/g,脑血比分别为 7 和 13,快速积聚在脑中。通过离体脑切片放射自显影,显示 [(18)F]fluspidine 结合部位占有率与 σ(1) 受体表达之间的相似性。放射性示踪剂在大脑以及外周 σ(1) 受体表达器官中的摄取被氟哌啶醇显著抑制,但不受他莫昔芬的影响。用大鼠肝微粒体孵育导致氟斯匹定的快速生物转化。孵育 30 分钟后,只有 13%的母体化合物残留。通过 HPLC-UV 和 LC-MS(n) 技术鉴定了 7 种代谢物。然而,[(18)F]fluspidine 在体内表现出更高的代谢稳定性。在血浆样本中,在 30 分钟时母体化合物约 94%,在 60 分钟时约 67%。仅检测到一种主要放射性代谢物。没有放射性代谢物穿过血脑屏障。
[(18)F]fluspidine 在体外和动物实验中表现出良好的靶亲和力和特异性以及代谢稳定性。[(18)F]fluspidine 的体内特性为该示踪剂在体内对 σ(1) 受体进行神经影像学研究和定量提供了很高的潜力。