Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
J Mol Biol. 2011 Jan 14;405(2):607-18. doi: 10.1016/j.jmb.2010.11.008. Epub 2010 Nov 10.
What conformations do protein molecules populate in solution? Crystallography provides a high-resolution description of protein structure in the crystal environment, while NMR describes structure in solution but using less data. NMR structures display more variability, but is this because crystal contacts are absent or because of fewer data constraints? Here we report unexpected insight into this issue obtained through analysis of detailed protein energy landscapes generated by large-scale, native-enhanced sampling of conformational space with Rosetta@home for 111 protein domains. In the absence of tightly associating binding partners or ligands, the lowest-energy Rosetta models were nearly all <2.5 Å C(α)RMSD from the experimental structure; this result demonstrates that structure prediction accuracy for globular proteins is limited mainly by the ability to sample close to the native structure. While the lowest-energy models are similar to deposited structures, they are not identical; the largest deviations are most often in regions involved in ligand, quaternary, or crystal contacts. For ligand binding proteins, the low energy models may resemble the apo structures, and for oligomeric proteins, the monomeric assembly intermediates. The deviations between the low energy models and crystal structures largely disappear when landscapes are computed in the context of the crystal lattice or multimer. The computed low-energy ensembles, with tight crystal-structure-like packing in the core, but more NMR-structure-like variability in loops, may in some cases resemble the native state ensembles of proteins better than individual crystal or NMR structures, and can suggest experimentally testable hypotheses relating alternative states and structural heterogeneity to function.
蛋白质分子在溶液中处于什么构象?晶体学提供了晶体环境中蛋白质结构的高分辨率描述,而 NMR 则描述了溶液中的结构,但使用的数据较少。NMR 结构显示出更多的可变性,但这是因为缺少晶体接触还是因为数据约束较少?在这里,我们通过分析使用 Rosetta@home 进行的大规模、天然增强的构象空间采样为 111 个蛋白质结构域生成的详细蛋白质能量景观,获得了对此问题的意外洞察。在没有紧密结合的配体或配体的情况下,最低能量的 Rosetta 模型与实验结构的 Cα RMSD 均<2.5Å;这一结果表明,球状蛋白质的结构预测精度主要受到接近天然结构的能力的限制。虽然最低能量模型与已发表的结构相似,但并不完全相同;最大的偏差通常出现在涉及配体、四级或晶体接触的区域。对于配体结合蛋白,低能量模型可能类似于apo 结构,而对于寡聚蛋白,低能量模型可能类似于单体组装中间体。当在晶体晶格或多聚体的背景下计算景观时,低能量模型与晶体结构之间的偏差大部分消失。计算出的低能量集合在核心中具有紧密的晶体结构样包装,但在环区具有更多的 NMR 结构样可变性,在某些情况下,可能比单个晶体或 NMR 结构更能模拟蛋白质的天然状态集合,并可以提出可通过实验验证的假设,将替代状态和结构异质性与功能联系起来。