Aspacio Derek, Luu Emma, Worakaensai Suphanida, Cui Youtian, Maxel Sarah, King Edward, Hagerty Raine, Chu Alexander, Minn Derek, Siegel Justin B, Li Han
Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States.
Genome Center, University of California, Davis, Davis, California 95616, United States.
ACS Catal. 2024 Jul 5;14(13):9776-9784. doi: 10.1021/acscatal.4c02131. Epub 2024 Jun 14.
The future of biomanufacturing is dependent on rewiring biological systems to establish an alternative approach to our current chemical industries. However, a key limitation in biomanufacturing is that desired processes must rely on the same two redox cofactors as natural metabolism, nicotinamide adenine dinucleotide (phosphate) NAD(P), to shuttle electrons energy. Thus, competition of resources with natural reactions within host cells is nearly unavoidable. One strategy to overcome redox cofactor resource competition is the implementation of a third, noncanonical redox cofactor, such as nicotinamide mononucleotide (NMN), which supports specific electron delivery to desired reactions. Here, we redesign the pyruvate dehydrogenase multienzyme complex (PDHc) to specially utilize NMN by engineering its E3 subunit (Lpd). Through rational design, we discover a cofactor promiscuous variant Lpd Penta (G182R-I186T-M206E-E205W-I271L) with an ~2500-fold improvement in NMN apparent turnover number. We tailor the enzyme to exclusively use NMN through computational design and construct Lpd Ortho (Penta-R292E-Q317L) with a 2.4 × 10-fold cofactor specificity improvement toward NMN compared to the wild type. Molecular simulation allowed tracking of the cofactor's alternative binding poses that emerge as the enzyme evolves, which was crucial to precisely guide engineering. We demonstrate that the engineered NMN-specific PDHc functions in cells to sustain the life-essential pyruvate metabolism, in an NMN-dependent manner. These results expand the available NMN toolkit to include the high flux and nearly irreversible reaction of PDHc as an insulated electron source.
生物制造的未来取决于重新构建生物系统,以建立一种替代当前化学工业的方法。然而,生物制造的一个关键限制是,所需的过程必须依赖于与天然代谢相同的两种氧化还原辅因子,即烟酰胺腺嘌呤二核苷酸(磷酸)NAD(P),来传递电子能量。因此,与宿主细胞内天然反应的资源竞争几乎是不可避免的。克服氧化还原辅因子资源竞争的一种策略是引入第三种非经典氧化还原辅因子,如烟酰胺单核苷酸(NMN),它支持将特定电子传递到所需反应中。在这里,我们通过对丙酮酸脱氢酶多酶复合物(PDHc)的E3亚基(Lpd)进行工程改造,重新设计该复合物以专门利用NMN。通过合理设计,我们发现了一种辅因子混杂变体Lpd Penta(G182R-I186T-M206E-E205W-I271L),其NMN表观周转数提高了约2500倍。我们通过计算设计使该酶专门使用NMN,并构建了Lpd Ortho(Penta-R292E-Q317L),与野生型相比,其对NMN的辅因子特异性提高了2.4×10倍。分子模拟能够追踪随着酶的进化而出现的辅因子的替代结合姿势,这对于精确指导工程设计至关重要。我们证明,工程改造后的NMN特异性PDHc在细胞中发挥作用,以NMN依赖的方式维持生命必需的丙酮酸代谢。这些结果扩展了可用的NMN工具包,使其包括PDHc的高通量和几乎不可逆反应,作为一种隔离的电子源。