Suppr超能文献

工程化改造丙酮酸代谢以产生非经典还原力。

Engineering Pyruvate Metabolism to Generate Noncanonical Reducing Power.

作者信息

Aspacio Derek, Luu Emma, Worakaensai Suphanida, Cui Youtian, Maxel Sarah, King Edward, Hagerty Raine, Chu Alexander, Minn Derek, Siegel Justin B, Li Han

机构信息

Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697-3900, United States.

Genome Center, University of California, Davis, Davis, California 95616, United States.

出版信息

ACS Catal. 2024 Jul 5;14(13):9776-9784. doi: 10.1021/acscatal.4c02131. Epub 2024 Jun 14.

Abstract

The future of biomanufacturing is dependent on rewiring biological systems to establish an alternative approach to our current chemical industries. However, a key limitation in biomanufacturing is that desired processes must rely on the same two redox cofactors as natural metabolism, nicotinamide adenine dinucleotide (phosphate) NAD(P), to shuttle electrons energy. Thus, competition of resources with natural reactions within host cells is nearly unavoidable. One strategy to overcome redox cofactor resource competition is the implementation of a third, noncanonical redox cofactor, such as nicotinamide mononucleotide (NMN), which supports specific electron delivery to desired reactions. Here, we redesign the pyruvate dehydrogenase multienzyme complex (PDHc) to specially utilize NMN by engineering its E3 subunit (Lpd). Through rational design, we discover a cofactor promiscuous variant Lpd Penta (G182R-I186T-M206E-E205W-I271L) with an ~2500-fold improvement in NMN apparent turnover number. We tailor the enzyme to exclusively use NMN through computational design and construct Lpd Ortho (Penta-R292E-Q317L) with a 2.4 × 10-fold cofactor specificity improvement toward NMN compared to the wild type. Molecular simulation allowed tracking of the cofactor's alternative binding poses that emerge as the enzyme evolves, which was crucial to precisely guide engineering. We demonstrate that the engineered NMN-specific PDHc functions in cells to sustain the life-essential pyruvate metabolism, in an NMN-dependent manner. These results expand the available NMN toolkit to include the high flux and nearly irreversible reaction of PDHc as an insulated electron source.

摘要

生物制造的未来取决于重新构建生物系统,以建立一种替代当前化学工业的方法。然而,生物制造的一个关键限制是,所需的过程必须依赖于与天然代谢相同的两种氧化还原辅因子,即烟酰胺腺嘌呤二核苷酸(磷酸)NAD(P),来传递电子能量。因此,与宿主细胞内天然反应的资源竞争几乎是不可避免的。克服氧化还原辅因子资源竞争的一种策略是引入第三种非经典氧化还原辅因子,如烟酰胺单核苷酸(NMN),它支持将特定电子传递到所需反应中。在这里,我们通过对丙酮酸脱氢酶多酶复合物(PDHc)的E3亚基(Lpd)进行工程改造,重新设计该复合物以专门利用NMN。通过合理设计,我们发现了一种辅因子混杂变体Lpd Penta(G182R-I186T-M206E-E205W-I271L),其NMN表观周转数提高了约2500倍。我们通过计算设计使该酶专门使用NMN,并构建了Lpd Ortho(Penta-R292E-Q317L),与野生型相比,其对NMN的辅因子特异性提高了2.4×10倍。分子模拟能够追踪随着酶的进化而出现的辅因子的替代结合姿势,这对于精确指导工程设计至关重要。我们证明,工程改造后的NMN特异性PDHc在细胞中发挥作用,以NMN依赖的方式维持生命必需的丙酮酸代谢。这些结果扩展了可用的NMN工具包,使其包括PDHc的高通量和几乎不可逆反应,作为一种隔离的电子源。

相似文献

1
Engineering Pyruvate Metabolism to Generate Noncanonical Reducing Power.工程化改造丙酮酸代谢以产生非经典还原力。
ACS Catal. 2024 Jul 5;14(13):9776-9784. doi: 10.1021/acscatal.4c02131. Epub 2024 Jun 14.
4
Biological production of nicotinamide mononucleotide: a review.烟酰胺单核苷酸的生物合成:综述
Crit Rev Biotechnol. 2025 Aug;45(5):1058-1075. doi: 10.1080/07388551.2024.2433993. Epub 2024 Dec 15.
6
Nicotinamide Mononucleotide Production in Metabolically Engineered .代谢工程中烟酰胺单核苷酸的生产
ACS Synth Biol. 2025 Jun 20;14(6):2053-2063. doi: 10.1021/acssynbio.4c00880. Epub 2025 May 9.

本文引用的文献

5
AlphaFill: enriching AlphaFold models with ligands and cofactors.AlphaFill:利用配体和辅因子丰富 AlphaFold 模型。
Nat Methods. 2023 Feb;20(2):205-213. doi: 10.1038/s41592-022-01685-y. Epub 2022 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验