Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA.
J Mol Biol. 2011 Jan 14;405(2):378-94. doi: 10.1016/j.jmb.2010.10.037. Epub 2010 Nov 10.
Drugs can affect function in proteins by modulating their flexibility. Despite this possibility, there are very few studies on how drug binding affects the dynamics of target macromolecules. FKBP12 (FK506 binding protein 12) is a prolyl cis-trans isomerase and a drug target. The immunosuppressant drug rapamycin exerts its therapeutic effect by serving as an adaptor molecule between FKBP12 and the cell proliferation regulator mTOR (mammalian target of rapamycin). To understand the role of dynamics in rapamycin-based immunosuppression and to gain insight into the role of dynamics in the assembly of supramolecular complexes, we used (15)N, (13)C, and (2)H NMR spin relaxation to characterize FKBP12 along the binding coordinate that leads to cell cycle arrest. We show that sequential addition of rapamycin and mTOR leads to incremental rigidification of the FKBP12 backbone on the picosecond-nanosecond timescale. Both binding events lead to perturbation of main-chain and side-chain dynamics at sites distal to the binding interfaces, suggesting tight coupling interactions dispersed throughout the FKBP12-rapamycin interface. Binding of the first molecule, rapamycin, quenches microsecond-millisecond motions of the FKBP12 80's loop. This loop provides much of the surface buried at the protein-protein interface of the ternary complex, leading us to assert that preorganization upon rapamycin binding facilitates binding of the second molecule, mTOR. Widespread microsecond-millisecond motions of the backbone persist in the drug-bound enzyme, and we provide evidence that these slow motions represent coupled dynamics of the enzyme and isomerization of the bound drug. Finally, the pattern of microsecond-millisecond dynamics reported here in the rapamycin complex is dramatically different from the pattern in the complex with the structurally related drug FK506. This raises the important question of how two complexes that are highly isomorphic based on high-resolution static models have such different flexibilities in solution.
药物可以通过调节蛋白质的柔韧性来影响其功能。尽管存在这种可能性,但关于药物结合如何影响靶大分子的动力学的研究非常少。FKBP12(FK506 结合蛋白 12)是一种脯氨酰顺反异构酶和药物靶标。免疫抑制剂雷帕霉素通过充当 FKBP12 和细胞增殖调节剂 mTOR(雷帕霉素的哺乳动物靶标)之间的衔接分子发挥其治疗作用。为了了解动力学在雷帕霉素为基础的免疫抑制中的作用,并深入了解动力学在超分子复合物组装中的作用,我们使用 (15)N、(13)C 和 (2)H NMR 自旋弛豫来描述 FKBP12 沿着导致细胞周期停滞的结合坐标。我们表明,雷帕霉素和 mTOR 的顺序添加导致 FKBP12 骨架在皮秒-纳秒时间尺度上逐渐僵化。两个结合事件都导致结合界面远端的主链和侧链动力学的扰动,表明 FKBP12-雷帕霉素界面上分散着紧密偶联的相互作用。第一个分子雷帕霉素的结合猝灭 FKBP12 80s 环的微秒-毫秒运动。该环提供了三元复合物中蛋白质-蛋白质界面上埋藏的大部分表面,这使我们断言,雷帕霉素结合时的预组织化促进了第二个分子 mTOR 的结合。在药物结合酶中,存在广泛的微秒-毫秒的骨架运动,我们提供了证据表明这些缓慢的运动代表了酶的耦合动力学和结合药物的异构化。最后,这里报道的雷帕霉素复合物中的微秒-毫秒动力学模式与结构相关药物 FK506 的复合物中的模式截然不同。这提出了一个重要的问题,即基于高分辨率静态模型高度同构的两个复合物在溶液中具有如此不同的柔韧性。