Suppr超能文献

一种用于预测在梯度洗脱反相色谱中精蛋白胰岛素及其两种杂质的吸附和洗脱轮廓的平行孔和表面扩散模型。

A parallel pore and surface diffusion model for predicting the adsorption and elution profiles of lispro insulin and two impurities in gradient-elution reversed phase chromatography.

机构信息

School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907-2100, USA.

出版信息

J Chromatogr A. 2010 Dec 24;1217(52):8103-20. doi: 10.1016/j.chroma.2010.09.078. Epub 2010 Oct 7.

Abstract

Lispro insulin (LPI), a widely used insulin analog, is produced on tons per year scale. Linear gradient reversed phase chromatography (RPC) is used in the production to separate LPI from two impurities, which differ from LPI by a single amino acid residue. A chromatography model for the ternary separation in this RPC process is unavailable from the literature. In this study, a parallel pore and surface diffusion model is developed and verified for LPI and the two impurities. The LPI can be recovered with high yield (≥95%) and high purity (>99.5%). A new method, which requires a small amount of materials and an order of magnitude fewer experiments, has been developed to estimate the solvent-modulated isotherm parameters. A modified reversed phase modulator model is developed to correlate the adsorption isotherms of LPI and impurities. A strategy has been developed for estimating the intrinsic pore diffusivity and surface diffusivity. Since the adsorption affinities decrease by more than three orders of magnitude as organic fraction (φ) increases from 0.19 to 0.40, the apparent diffusivities based on a pore diffusion model or a surface diffusion model can also vary by several orders of magnitude. For this reason, a pore diffusion model or a surface diffusion model with a constant apparent diffusivity cannot predict closely the chromatograms over the same range of organic fractions, concentrations, and loadings. The parallel pore and surface diffusion model with constant diffusivities can predict closely the frontal and elution profiles over a wide range of organic fractions (0.19-0.40), LPI concentrations (0.05-18 g/L), linear velocities (<10 cm/min), and loading volume (0.0004-13 CV). For large loading stepwise and linear gradient elution, the peaks of LPI and the impurities are strongly focused by self-sharpening and gradient focusing effects as a result of the steep decrease of adsorption affinity from the loading φ (0.19) to elution φ (≥0.27). When the ratio of diffusion rate to convection rate is greater than 10, spreading due to diffusion is largely compensated by the focusing effects. As a result, a pore diffusion model with a constant pore diffusivity can predict closely the elution profiles in stepwise and linear gradient elution. The experimental yield values (≥95%) can be predicted to within ±1% by the model.

摘要

赖脯胰岛素(LPI)是一种广泛使用的胰岛素类似物,每年的产量达到数吨。在生产中,线性梯度反相色谱(RPC)用于分离 LPI 与其两种杂质,这两种杂质仅在单个氨基酸残基上存在差异。目前,文献中尚无该 RPC 过程中三元分离的色谱模型。本研究开发并验证了一种用于 LPI 和两种杂质的平行孔和表面扩散模型。LPI 可以以高收率(≥95%)和高纯度(>99.5%)进行回收。已经开发出一种新方法,该方法仅需要少量材料和数量级更少的实验,即可估算溶剂调制等温线参数。开发了一种改进的反相调制器模型来关联 LPI 和杂质的吸附等温线。已经开发出一种用于估计本征孔扩散率和表面扩散率的策略。由于当有机分数(φ)从 0.19 增加到 0.40 时,吸附亲和力降低了三个数量级以上,因此基于孔扩散模型或表面扩散模型的表观扩散率也可能相差几个数量级。因此,在相同的有机分数、浓度和负荷范围内,具有恒定表观扩散率的孔扩散模型或表面扩散模型不能很好地预测色谱图。具有恒定扩散率的平行孔和表面扩散模型可以很好地预测在很宽的有机分数范围(0.19-0.40)、LPI 浓度(0.05-18 g/L)、线性速度(<10 cm/min)和加载体积(0.0004-13 CV)下的前沿和洗脱轮廓。对于大的加载分步和线性梯度洗脱,由于从加载φ(0.19)到洗脱φ(≥0.27)吸附亲和力急剧下降,LPI 和杂质的峰通过自锐化和梯度聚焦效应强烈聚焦。当扩散速率与对流速率之比大于 10 时,由于扩散引起的展宽在很大程度上被聚焦效应所补偿。因此,具有恒定孔扩散率的孔扩散模型可以很好地预测分步和线性梯度洗脱中的洗脱轮廓。该模型可以将实验收率值(≥95%)预测到±1%以内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验