Suppr超能文献

通过相位振荡器的准同步学习模式识别。

Learning pattern recognition through quasi-synchronization of phase oscillators.

作者信息

Vassilieva Ekaterina, Pinto Guillaume, de Barros José Acacio, Suppes Patrick

机构信息

Laboratoire d’Informatique de l’X, Laboratoire d’Informatique de l’École Polytechnique, Palaiseau Cedex 91128, France.

出版信息

IEEE Trans Neural Netw. 2011 Jan;22(1):84-95. doi: 10.1109/TNN.2010.2086476. Epub 2010 Nov 11.

Abstract

The idea that synchronized oscillations are important in cognitive tasks is receiving significant attention. In this view, single neurons are no longer elementary computational units. Rather, coherent oscillating groups of neurons are seen as nodes of networks performing cognitive tasks. From this assumption, we develop a model of stimulus-pattern learning and recognition. The three most salient features of our model are: 1) a new definition of synchronization; 2) demonstrated robustness in the presence of noise; and 3) pattern learning.

摘要

同步振荡在认知任务中很重要这一观点正受到广泛关注。按照这种观点,单个神经元不再是基本的计算单元。相反,神经元的相干振荡组被视为执行认知任务的网络节点。基于这一假设,我们开发了一种刺激模式学习与识别模型。我们模型的三个最显著特征是:1)同步的新定义;2)在存在噪声的情况下表现出的鲁棒性;3)模式学习。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验