Suppr超能文献

猴 V4 中颜色和方向的功能组织。

Functional organization for color and orientation in macaque V4.

机构信息

Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Nat Neurosci. 2010 Dec;13(12):1542-8. doi: 10.1038/nn.2676. Epub 2010 Nov 14.

Abstract

Visual area V4 in the macaque monkey is a cortical area that is strongly involved in color and shape perception. However, fundamental questions about V4 are still debated. V4 was initially characterized as a color-processing area, but subsequent studies revealed that it contains a diverse complement of cells, including those with preference for color, orientation, disparity and higher-order feature preferences. This has led to disputes and uncertainty about the role of V4 in vision. Using intrinsic signal optical imaging methods in awake, behaving monkeys, we found that different feature preferences are functionally organized in V4. Optical images revealed that regions with preferential response to color were largely separate from orientation-selective regions. Our results help to resolve long-standing controversies regarding functional diversity and retinotopy in V4 and indicate the presence of spatially biased distribution of featural representation in V4 in the ventral visual pathway.

摘要

在猕猴中,视区 V4 是一个与颜色和形状感知密切相关的皮质区域。然而,关于 V4 的一些基本问题仍存在争议。V4 最初被描述为一个处理颜色的区域,但随后的研究表明,它包含了多种细胞类型,包括对颜色、方向、视差和更高阶特征有偏好的细胞。这导致了关于 V4 在视觉中的作用的争议和不确定性。我们使用在清醒、行为的猴子中进行的内源信号光学成像方法,发现不同的特征偏好在 V4 中是有功能组织的。光学图像显示,对颜色有优先反应的区域与方向选择性区域基本分离。我们的结果有助于解决关于 V4 中功能多样性和视网膜投射的长期争议,并表明在腹侧视觉通路上存在特征表示的空间偏向分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ea/3005205/7063e5d2bea0/nihms240935f1.jpg

相似文献

1
Functional organization for color and orientation in macaque V4.
Nat Neurosci. 2010 Dec;13(12):1542-8. doi: 10.1038/nn.2676. Epub 2010 Nov 14.
2
Hue and orientation pinwheels in macaque area V4.
J Neurophysiol. 2024 Aug 1;132(2):589-615. doi: 10.1152/jn.00366.2023. Epub 2024 Jul 11.
3
An Orientation Map for Disparity-Defined Edges in Area V4.
Cereb Cortex. 2019 Feb 1;29(2):666-679. doi: 10.1093/cercor/bhx348.
4
A motion direction preference map in monkey V4.
Neuron. 2013 Apr 24;78(2):376-88. doi: 10.1016/j.neuron.2013.02.024.
5
End-Stopping Predicts Curvature Tuning along the Ventral Stream.
J Neurosci. 2017 Jan 18;37(3):648-659. doi: 10.1523/JNEUROSCI.2507-16.2016.
6
Hierarchical Representation for Chromatic Processing across Macaque V1, V2, and V4.
Neuron. 2020 Nov 11;108(3):538-550.e5. doi: 10.1016/j.neuron.2020.07.037. Epub 2020 Aug 26.
7
Responses to contour features in macaque area V4.
J Neurophysiol. 1999 Nov;82(5):2490-502. doi: 10.1152/jn.1999.82.5.2490.
8
Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex.
Behav Brain Res. 1996 Apr;76(1-2):71-88. doi: 10.1016/0166-4328(95)00184-0.
9
Visual Functions of Primate Area V4.
Annu Rev Vis Sci. 2020 Sep 15;6:363-385. doi: 10.1146/annurev-vision-030320-041306. Epub 2020 Jun 24.
10
Spatial frequency representation in V2 and V4 of macaque monkey.
Elife. 2023 Jan 6;12:e81794. doi: 10.7554/eLife.81794.

引用本文的文献

1
Smart Dura: a functional artificial dura for multimodal neural recording and modulation.
bioRxiv. 2025 Jul 24:2025.02.26.640369. doi: 10.1101/2025.02.26.640369.
2
Beyond binding: from modular to natural vision.
Trends Cogn Sci. 2025 Jun;29(6):505-515. doi: 10.1016/j.tics.2025.03.002. Epub 2025 Apr 14.
3
Using Generative Models of Naturalistic Scenes to Sample Neural Population Tuning Manifolds.
Eur J Neurosci. 2025 Apr;61(7):e70088. doi: 10.1111/ejn.70088.
5
Mapping curvature domains in human V4 using CBV-sensitive layer-fMRI at 3T.
Front Neurosci. 2025 Feb 26;19:1537026. doi: 10.3389/fnins.2025.1537026. eCollection 2025.
6
Robust encoding of stimulus-response mapping by neurons in visual cortex.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2408079122. doi: 10.1073/pnas.2408079122. Epub 2025 Feb 24.
7
Compartmentalized pooling generates orientation selectivity in wide-field amacrine cells.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2411130121. doi: 10.1073/pnas.2411130121. Epub 2024 Nov 27.
8
High-Density Recording Reveals Sparse Clusters (But Not Columns) for Shape and Texture Encoding in Macaque V4.
J Neurosci. 2025 Jan 29;45(5):e1893232024. doi: 10.1523/JNEUROSCI.1893-23.2024.
10
Large-scale calcium imaging reveals a systematic V4 map for encoding natural scenes.
Nat Commun. 2024 Jul 30;15(1):6401. doi: 10.1038/s41467-024-50821-z.

本文引用的文献

1
Distribution of colour-selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging.
Eur J Neurosci. 2009 Nov;30(10):1960-70. doi: 10.1111/j.1460-9568.2009.06995.x. Epub 2009 Nov 11.
2
Organization of color-selective neurons in macaque visual area V4.
J Neurophysiol. 2009 Jul;102(1):15-27. doi: 10.1152/jn.90624.2008. Epub 2009 Apr 15.
3
Specialized color modules in macaque extrastriate cortex.
Neuron. 2007 Nov 8;56(3):560-73. doi: 10.1016/j.neuron.2007.10.008.
4
Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging.
Cereb Cortex. 2008 Mar;18(3):516-33. doi: 10.1093/cercor/bhm081. Epub 2007 Jun 18.
5
Hue maps in primate striate cortex.
Neuroimage. 2007 Apr 1;35(2):771-86. doi: 10.1016/j.neuroimage.2006.11.059. Epub 2006 Dec 22.
6
Effects of task demands on the responses of color-selective neurons in the inferior temporal cortex.
Nat Neurosci. 2007 Jan;10(1):108-16. doi: 10.1038/nn1823. Epub 2006 Dec 17.
7
Feature-based attention in visual cortex.
Trends Neurosci. 2006 Jun;29(6):317-22. doi: 10.1016/j.tins.2006.04.001. Epub 2006 May 11.
8
V2 thin stripes contain spatially organized representations of achromatic luminance change.
Cereb Cortex. 2007 Jan;17(1):116-29. doi: 10.1093/cercor/bhj131. Epub 2006 Feb 8.
10
The circuitry of V1 and V2: integration of color, form, and motion.
Annu Rev Neurosci. 2005;28:303-26. doi: 10.1146/annurev.neuro.28.061604.135731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验