Suppr超能文献

使用自然场景生成模型对神经群体调谐流形进行采样。

Using Generative Models of Naturalistic Scenes to Sample Neural Population Tuning Manifolds.

作者信息

Scott Hayden, Murphy Allison J, Briggs Farran, Snyder Adam C

机构信息

Brain and Cognitive Sciences, University of Rochester, Rochester, New York, USA.

Center for Visual Science, University of Rochester, Rochester, New York, USA.

出版信息

Eur J Neurosci. 2025 Apr;61(7):e70088. doi: 10.1111/ejn.70088.

Abstract

Investigations into sensory coding in the visual system have typically relied on the use of either simple, unnatural visual stimuli or natural images. Simple stimuli, such as Gabor patches, have been effective when looking at single neurons in early visual areas such as V1 but seldom produce large responses from mid-level visual neurons or neural populations with diverse tuning. Many types of "naturalistic" image models have been developed recently, which bridge the gap between overly simple stimuli and experimentally infeasible natural images. These stimuli can vary along a large number of feature dimensions, introducing new challenges when trying to map those features to neural activity. This "curse of dimensionality" is exacerbated when neural responses are themselves high dimensional, such as when recording neural populations with implanted multielectrode arrays. We propose a method that searches high-dimensional stimulus spaces for characterizing neural population manifolds in a closed-loop experimental design. Stimuli were generated using a deep neural network in each block by using neural responses to previous stimuli to make predictions about the relationship between the latent space of the image model and neural responses. We found that these latent variables from the deep generative image model explained stronger linear relationships with neural activity than various alternative forms of image compression. This result reinforces the potential for deep generative image models for efficient characterization of high-dimensional tuning manifolds for visual neural populations.

摘要

对视觉系统中感觉编码的研究通常依赖于使用简单的、非自然的视觉刺激或自然图像。简单刺激,如Gabor斑块,在观察早期视觉区域(如V1)中的单个神经元时很有效,但很少能引起中级视觉神经元或具有不同调谐的神经群体产生大的反应。最近已经开发了许多类型的“自然主义”图像模型,它们弥合了过于简单的刺激与实验上不可行的自然图像之间的差距。这些刺激可以在大量特征维度上变化,在试图将这些特征映射到神经活动时带来了新的挑战。当神经反应本身是高维的时候,比如用植入的多电极阵列记录神经群体时,这种“维度诅咒”会加剧。我们提出了一种方法,在闭环实验设计中搜索高维刺激空间以表征神经群体流形。在每个块中使用深度神经网络生成刺激,通过使用对先前刺激的神经反应来预测图像模型的潜在空间与神经反应之间的关系。我们发现,来自深度生成图像模型的这些潜在变量与神经活动的线性关系比各种替代形式的图像压缩更强。这一结果强化了深度生成图像模型在有效表征视觉神经群体的高维调谐流形方面的潜力。

相似文献

2
Tuning landscapes of the ventral stream.腹侧流的调谐景观。
Cell Rep. 2022 Nov 8;41(6):111595. doi: 10.1016/j.celrep.2022.111595.
8
Population encoding of stimulus features along the visual hierarchy.刺激特征沿视觉层级的群体编码。
Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2317773121. doi: 10.1073/pnas.2317773121. Epub 2024 Jan 16.

本文引用的文献

3
A review on genetic algorithm: past, present, and future.关于遗传算法的综述:过去、现在与未来。
Multimed Tools Appl. 2021;80(5):8091-8126. doi: 10.1007/s11042-020-10139-6. Epub 2020 Oct 31.
5
Signals Related to Color in the Early Visual Cortex.早期视觉皮层中与颜色相关的信号
Annu Rev Vis Sci. 2020 Sep 15;6:287-311. doi: 10.1146/annurev-vision-121219-081801.
7
10
Neural Coding for Shape and Texture in Macaque Area V4.猴 V4 区的形状和纹理的神经编码。
J Neurosci. 2019 Jun 12;39(24):4760-4774. doi: 10.1523/JNEUROSCI.3073-18.2019. Epub 2019 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验