Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus C, Denmark.
Chemphyschem. 2010 Dec 3;11(17):3609-16. doi: 10.1002/cphc.201000737.
We present a new method for creating surface chemical patterns where three chemistries can be periodically arranged at alternate positions on a single substrate without the use of top-down approaches. High-resolution chemical imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS), with nanometer spatial resolution, is used to prove the success of the patterning and subsequent chemical modification steps. We use a combination of colloidal self-assembly, plasma etching, self-assembled monolayers (SAMs) and physical vapour deposition (PVD). The method utilizes a double colloid assembly process in which a first layer of close-packed colloids is created, followed by plasma etching, coating with gold and deposition of a first SAM layer. A second particle layer is deposited on top of the first layer masking the interstitial spaces containing the first SAM. A second gold layer is deposited followed by a second SAM. After particle removal the surface consists of the pattern containing two different SAMs and a SiO(2) layer that can be readily functionalized with silanes. The possibility in the replacement of the two different thiols is investigated by X-ray photoelectron spectroscopy (XPS) and it was found that no replacement is taking place. ToF-SIMS imaging is used to show the periodicity of the chemical patterns by tracking unique fragment ions from the different surface regions. The patterning method is adaptable to create smaller or larger chemical patterns by appropriate choice of particle sizes. The patterns are useful for immobilizing biomolecules for cell studies or as multiplexed biosensors.
我们提出了一种新的方法来创建表面化学图案,其中三种化学物质可以在单个基底上的交替位置周期性排列,而无需使用自上而下的方法。通过飞行时间二次离子质谱(ToF-SIMS)进行高分辨率化学成像,具有纳米空间分辨率,用于证明图案化和随后的化学修饰步骤的成功。我们使用胶体自组装、等离子体蚀刻、自组装单分子层(SAM)和物理气相沉积(PVD)的组合。该方法利用双层胶体组装过程,首先形成一层紧密堆积的胶体,然后进行等离子体蚀刻、金涂层和第一层 SAM 层的沉积。将第二层颗粒沉积在第一层之上,掩蔽包含第一层 SAM 的间隙空间。沉积第二层金层,然后沉积第二层 SAM。去除颗粒后,表面包含两种不同 SAM 和 SiO 2 层的图案,该层可通过硅烷轻松功能化。通过 X 射线光电子能谱(XPS)研究了两种不同硫醇的替代可能性,发现没有发生替代。ToF-SIMS 成像用于通过跟踪不同表面区域的独特碎片离子来显示化学图案的周期性。通过适当选择颗粒尺寸,图案化方法可适应创建更小或更大的化学图案。这些图案可用于固定生物分子进行细胞研究或作为多重生物传感器。