Laboratoire de Physique Théorique, IRSAMC, CNRS UMR 5152, Université de Toulouse, UPS, 31062 Toulouse, France.
Philos Trans A Math Phys Eng Sci. 2010 Dec 28;368(1933):5645-59. doi: 10.1098/rsta.2010.0275.
Thanks to recent technological advances, it is now possible to track with an unprecedented precision and for long periods of time the movement patterns of many living organisms in their habitat. The increasing amount of data available on single trajectories offers the possibility of understanding how animals move and of testing basic movement models. Random walks have long represented the main description for micro-organisms and have also been useful to understand the foraging behaviour of large animals. Nevertheless, most vertebrates, in particular humans and other primates, rely on sophisticated cognitive tools such as spatial maps, episodic memory and travel cost discounting. These properties call for other modelling approaches of mobility patterns. We propose a foraging framework where a learning mobile agent uses a combination of memory-based and random steps. We investigate how advantageous it is to use memory for exploiting resources in heterogeneous and changing environments. An adequate balance of determinism and random exploration is found to maximize the foraging efficiency and to generate trajectories with an intricate spatio-temporal order, where travel routes emerge without multi-step planning. Based on this approach, we propose some tools for analysing the non-random nature of mobility patterns in general.
由于最近的技术进步,现在可以以前所未有的精度和长时间跟踪许多生物在其栖息地的运动模式。关于单个轨迹的可用数据量的增加提供了理解动物如何移动和测试基本移动模型的可能性。随机漫步长期以来一直是微生物的主要描述方式,也有助于理解大型动物的觅食行为。然而,大多数脊椎动物,特别是人类和其他灵长类动物,依赖于复杂的认知工具,如空间地图、情景记忆和旅行成本折扣。这些特性要求采用其他移动模式建模方法。我们提出了一个觅食框架,其中学习型移动代理使用基于记忆和随机步的组合。我们研究了在异构和变化的环境中使用记忆来利用资源的优势。发现确定性和随机探索之间的适当平衡可以最大限度地提高觅食效率,并生成具有复杂时空顺序的轨迹,其中旅行路线无需多步规划即可出现。基于这种方法,我们提出了一些分析移动模式非随机性的工具。