Suppr超能文献

张力和形状熵解释了观察到的线粒体嵴结构。

Tensile forces and shape entropy explain observed crista structure in mitochondria.

机构信息

Department of Physics, San Diego State University, San Diego, CA, USA.

出版信息

Biophys J. 2010 Nov 17;99(10):3244-54. doi: 10.1016/j.bpj.2010.09.038.

Abstract

We present a model from which the observed morphology of the inner mitochondrial membrane can be inferred as minimizing the system's free energy. In addition to the usual energetic terms for bending, surface area, and pressure difference, our free energy includes terms for tension that we hypothesize to be exerted by proteins and for an entropic contribution due to many dimensions worth of shapes available at a given energy. We also present measurements of the structural features of mitochondria in HeLa cells and mouse embryonic fibroblasts using three-dimensional electron tomography. Such tomograms reveal that the inner membrane self-assembles into a complex structure that contains both tubular and flat lamellar crista components. This structure, which contains one matrix compartment, is believed to be essential to the proper functioning of mitochondria as the powerhouse of the cell. Interpreting the measurements in terms of the model, we find that tensile forces of ∼20 pN would stabilize a stress-induced coexistence of tubular and flat lamellar cristae phases. The model also predicts a pressure difference of -0.036 ± 0.004 atm (pressure higher in the matrix) and a surface tension equal to 0.09 ± 0.04 pN/nm.

摘要

我们提出了一个模型,根据该模型,通过最小化系统的自由能,可以推断出观察到的线粒体内膜的形态。除了弯曲、表面积和压差的常用能量项外,我们的自由能还包括我们假设由蛋白质施加的张力项和由于给定能量下存在许多维度的形状而导致的熵贡献项。我们还使用三维电子断层扫描测量了 HeLa 细胞和小鼠胚胎成纤维细胞中线粒体的结构特征。这些断层扫描图显示,内膜自身组装成一种复杂的结构,其中包含管状和平坦的片状嵴成分。这种结构包含一个基质隔室,被认为是线粒体作为细胞的动力源正常运作所必需的。根据模型对测量结果进行解释,我们发现,约 20 pN 的张力可稳定管状和平坦的片状嵴相之间的应力诱导共存。该模型还预测基质中的压力差为-0.036±0.004 atm(压力更高)和表面张力等于 0.09±0.04 pN/nm。

相似文献

1
Tensile forces and shape entropy explain observed crista structure in mitochondria.
Biophys J. 2010 Nov 17;99(10):3244-54. doi: 10.1016/j.bpj.2010.09.038.
2
The Drosophila inner-membrane protein PMI controls crista biogenesis and mitochondrial diameter.
J Cell Sci. 2013 Feb 1;126(Pt 3):814-24. doi: 10.1242/jcs.115675. Epub 2012 Dec 21.
3
Who and how in the regulation of mitochondrial cristae shape and function.
Biochem Biophys Res Commun. 2018 May 27;500(1):94-101. doi: 10.1016/j.bbrc.2017.04.088. Epub 2017 Apr 21.
6
Cardiolipin and mitochondrial cristae organization.
Biochim Biophys Acta Biomembr. 2017 Jun;1859(6):1156-1163. doi: 10.1016/j.bbamem.2017.03.013. Epub 2017 Mar 20.
7
Cristae formation-linking ultrastructure and function of mitochondria.
Biochim Biophys Acta. 2009 Jan;1793(1):5-19. doi: 10.1016/j.bbamcr.2008.06.013. Epub 2008 Jun 20.
8
Electron tomography of mitochondria from brown adipocytes reveals crista junctions.
J Bioenerg Biomembr. 1998 Oct;30(5):431-42. doi: 10.1023/a:1020586012561.
9
Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution.
Curr Biol. 2020 May 18;30(10):R575-R588. doi: 10.1016/j.cub.2020.02.053.
10
Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062723. doi: 10.1103/PhysRevE.88.062723. Epub 2013 Dec 27.

引用本文的文献

1
Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes.
J Cell Physiol. 2024 Aug;239(8):e31293. doi: 10.1002/jcp.31293. Epub 2024 May 21.
2
Ablation of is associated with fragmentation and alterations in metabolism in murine and human myotubes.
bioRxiv. 2023 Oct 19:2023.05.20.541602. doi: 10.1101/2023.05.20.541602.
4
Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems.
Membranes (Basel). 2021 Jun 23;11(7):465. doi: 10.3390/membranes11070465.
5
Mechanics of nuclear membranes.
J Cell Sci. 2019 Jul 15;132(14):jcs229245. doi: 10.1242/jcs.229245.
6
Elastic membranes in confinement.
J R Soc Interface. 2016 Jul;13(120). doi: 10.1098/rsif.2016.0408.
7
Modeling of Mitochondrial Donut Formation.
Biophys J. 2015 Sep 1;109(5):892-9. doi: 10.1016/j.bpj.2015.07.039.
8
Understanding shape entropy through local dense packing.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4812-21. doi: 10.1073/pnas.1418159111. Epub 2014 Oct 24.
9
Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062723. doi: 10.1103/PhysRevE.88.062723. Epub 2013 Dec 27.
10
Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa.
PLoS One. 2013 Jun 13;8(6):e66068. doi: 10.1371/journal.pone.0066068. Print 2013.

本文引用的文献

1
Membrane curvature controls dynamin polymerization.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4141-6. doi: 10.1073/pnas.0913734107. Epub 2010 Feb 16.
2
Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion.
Mol Biol Cell. 2009 Aug;20(15):3525-32. doi: 10.1091/mbc.e09-03-0252. Epub 2009 May 28.
3
Maximum Caliber: a variational approach applied to two-state dynamics.
J Chem Phys. 2008 May 21;128(19):194102. doi: 10.1063/1.2918345.
5
Elastic modeling of biomembranes and lipid bilayers.
Annu Rev Phys Chem. 2008;59:685-712. doi: 10.1146/annurev.physchem.59.032607.093550.
6
Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis.
Nat Cell Biol. 2007 Sep;9(9):1057-65. doi: 10.1038/ncb1630. Epub 2007 Aug 26.
7
Hydrodynamic narrowing of tubes extruded from cells.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7660-3. doi: 10.1073/pnas.0602012103. Epub 2006 May 5.
8
Membrane curvature and mechanisms of dynamic cell membrane remodelling.
Nature. 2005 Dec 1;438(7068):590-6. doi: 10.1038/nature04396.
9
Modeling tubular shapes in the inner mitochondrial membrane.
Phys Biol. 2005 Mar;2(1):73-9. doi: 10.1088/1478-3967/2/1/009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验