Stock Gerhard, Ghosh Kingshuk, Dill Ken A
Institute of Physical and Theoretical Chemistry, J W Goethe University, Max-von-Laue-Str. 7, D-60438 Frankfurt, Germany.
J Chem Phys. 2008 May 21;128(19):194102. doi: 10.1063/1.2918345.
We show how to apply a general theoretical approach to nonequilibrium statistical mechanics, called Maximum Caliber, originally suggested by E. T. Jaynes [Annu. Rev. Phys. Chem. 31, 579 (1980)], to a problem of two-state dynamics. Maximum Caliber is a variational principle for dynamics in the same spirit that Maximum Entropy is a variational principle for equilibrium statistical mechanics. The central idea is to compute a dynamical partition function, a sum of weights over all microscopic paths, rather than over microstates. We illustrate the method on the simple problem of two-state dynamics, A<-->B, first for a single particle, then for M particles. Maximum Caliber gives a unified framework for deriving all the relevant dynamical properties, including the microtrajectories and all the moments of the time-dependent probability density. While it can readily be used to derive the traditional master equation and the Langevin results, it goes beyond them in also giving trajectory information. For example, we derive the Langevin noise distribution rather than assuming it. As a general approach to solving nonequilibrium statistical mechanics dynamical problems, Maximum Caliber has some advantages: (1) It is partition-function-based, so we can draw insights from similarities to equilibrium statistical mechanics. (2) It is trajectory-based, so it gives more dynamical information than population-based approaches like master equations; this is particularly important for few-particle and single-molecule systems. (3) It gives an unambiguous way to relate flows to forces, which has traditionally posed challenges. (4) Like Maximum Entropy, it may be useful for data analysis, specifically for time-dependent phenomena.
我们展示了如何将一种应用于非平衡统计力学的通用理论方法——最大口径法,最初由E. T. 杰恩斯提出[《物理化学年度评论》31, 579 (1980)],应用于两态动力学问题。最大口径法是一种动力学变分原理,其精神与最大熵作为平衡统计力学的变分原理相同。核心思想是计算一个动力学配分函数,即对所有微观路径而非微观状态的权重求和。我们在两态动力学的简单问题A<-->B上阐述该方法,首先针对单个粒子,然后针对M个粒子。最大口径法为推导所有相关动力学性质提供了一个统一框架,包括微观轨迹和时间相关概率密度的所有矩。虽然它可以很容易地用于推导传统的主方程和朗之万结果,但它超越了这些,还给出了轨迹信息。例如,我们推导朗之万噪声分布而不是假设它。作为解决非平衡统计力学动力学问题的一种通用方法,最大口径法具有一些优点:(1) 它基于配分函数,因此我们可以从与平衡统计力学的相似性中获得见解。(2) 它基于轨迹,因此比像主方程这样基于总体的方法提供更多动力学信息;这对于少粒子和单分子系统尤为重要。(3) 它给出了一种明确的方法来关联流和力,这在传统上是一个挑战。(4) 与最大熵一样,它可能对数据分析有用,特别是对于时间相关现象。